PCB 设计基础教程
目 录
1. 高速
PCB
设计指南之一
2. 高速
PCB
设计指南之二
3. PCB Layout
指南 ( 上 )
4. PCB Layout
指南 ( 下 )
5. PCB
设计的一般原则
6. PCB
设计基础知识
7. PCB
设计基本概念
8. pcb
设计注意事项
9. PCB
设计几点体会
10. PCB LAYOUT
技术大全
11. PCB
和电子产品设计
12. PCB
电路版图设计的常见问题
13. PCB
设计中格点的设置
14. 新手设计
PCB
注意事项
15. 怎样做一块好的
PCB
板
16. 射频电路
PCB
设计
17. 设计技巧整理
18. 用
PROTEL99
制作印刷电路版的基本流程
19. 用
PROTEL99SE 布线的基本流程
20. 蛇形走线有什么作用
21. 封装小知识
22. 典型的焊盘直径和最大导线宽度的关系
23. 新手上路认识
PCB
24. 新手上路认识
PCB< 二 >
高速 PCB 设计指南之一
高速 PCB 设计指南之一
第一篇 PCB 布线
在 PCB 设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的, 在整个
PCB 中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB 布线有单面布线、 双面布线及多层
布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前, 可以用交互式预先对要求比较
严格的线进行布线,输入端与输出端的边线应避免相邻平行, 以免产生反射干扰。必要时应加地线隔离,
两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定, 包括走线的弯曲次数、导通孔的数
目、步进的数目等。一般先进行探索式布经线,快速地把短线连通, 然后进行迷宫式布线,先把要布的
连线进行全局的布线路径优化,它可以根据需要断开已布的线。 并试着重新再布线,以改进总体效果。
对目前高密度的 PCB 设计已感觉到贯通孔不太适应了, 它浪费了许多宝贵的布线通道,为解决这一矛
盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用, 还省出许多布线通道使布线过程完成得更加
方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需
广大电子工程设计人员去自已体会, 才能得到其中的真谛。
1 电源、地线的处理
既使在整个 PCB 板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品
的性能下降,有时甚至影响到产品的成功率。所以对电、 地线的布线要认真对待,把电、地线所产生的
噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式
抑制噪音作以表述:
(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通
常信号线宽为:0.2~0.3mm,最经细宽度可达 0.05~0.07mm,电源线为 1.2~2.5 mm
对数字电路的 PCB 可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)
(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,
电源,地线各占用一层。
2 数字电路与模拟电路的共地处理
现在有许多 PCB 不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。
因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路
器件,对地线来说,整人 PCB 对外界只有一个结点,所以必须在 PCB 内部进行处理数、模共地的问题,
而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在 PCB 与外界连接的接口处(如插
头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在 PCB 上不共地的,这由系统设
计来决定。
3 信号线布在电(地)层上
在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给
生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先
应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。
4 大面积导体中连接腿的处理
在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气
性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功
率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat
shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。
多层板的接电(地)层腿的处理相同。
5 布线中网络系统的作用
在许多 CAD 系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场
的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大
的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通
路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。
标准元器件两腿之间的距离为 0.1 英寸(2.54mm),所以网格系统的基础一般就定为 0.1 英寸(2.54
mm)或小于 0.1 英寸的整倍数,如:0.05 英寸、0.025 英寸、0.02 英寸等。
6 设计规则检查(DRC)
布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是
否符合印制板生产工艺的需求,一般检查有如下几个方面:
(1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,
是否满足生产要求。
(2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在 PCB 中是否还有
能让地线加宽的地方。
(3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。
(4)、模拟电路和数字电路部分,是否有各自独立的地线。
(5)后加在 PCB 中的图形(如图标、注标)是否会造成信号短路。
(6)对一些不理想的线形进行修改。
(7)、在 PCB 上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压
在器件焊盘上,以免影响电装质量。
(8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。
********************************************************************************************
***
第二篇 PCB 布局
在设计中,布局是一个重要的环节。布局结果的好坏将直接影响布线的效果,因此可以这样认为,合
理的布局是 PCB 设计成功的第一步。
布局的方式分两种,一种是交互式布局,另一种是自动布局,一般是在自动布局的基础上用交互式布
局进行调整,在布局时还可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于
布线的最佳布局。在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得 PCB 板中的
有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来, 同时对模拟的有关信息进行更新,
使得能对电路的电气性能及功能进行板级验证。
--考虑整体美观
一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是
成 功的。
在一个 PCB 板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。
--布局的检查
印制板尺寸是否与加工图纸尺寸相符?能否符合 PCB 制造工艺要求?有无定位标记?
元件在二维、三维空间上有无冲突?
元件布局是否疏密有序,排列整齐?是否全部布完?
需经常更换的元件能否方便的更换?插件板插入设备是否方便?
热敏元件与发热元件之间是否有适当的距离?
调整可调元件是否方便?
在需要散热的地方,装了散热器没有?空气流是否通畅?
信号流程是否顺畅且互连最短?
插头、插座等与机械设计是否矛盾?
线路的干扰问题是否有所考虑?
********************************************************************************************
***
第三篇 高速 PCB 设计
(一)、电子系统设计所面临的挑战
随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事 100MHZ 以上的电路设计,
总线的工作频率也已经达到或者超过 50MHZ,有的甚至超过 100MHZ。目前约 50% 的设计的时钟频率
超过 50MHz,将近 20% 的设计主频超过 120MHz。
当系统工作在 50MHz 时,将产生传输线效应和信号的完整性问题;而当系统时钟达到 120MHz 时,
除非使用高速电路设计知识,否则基于传统方法设计的 PCB 将无法工作。因此,高速电路设计技术已经
成为电子系统设计师必须采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程
的可控性。
(二)、什么是高速电路
通常认为如果数字逻辑电路的频率达到或者超过 45MHZ~50MHZ,而且工作在这个频率之上的电
路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的
跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于 1/2 数字信号驱动端的上升时
间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的
时间,如果传输时间小于 1/2 的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达
驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会
改变逻辑状态。
(三)、高速信号的确定
上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于 1/2 驱动端的信号上升时
间? 一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在 PCB 设计中由实际布线
长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,
延时将增大。通常高速逻辑器件的信号上升时间大约为 0.2ns。如果板上有 GaAs 芯片,则最大布线长度
为 7.62mm。
设 Tr 为信号上升时间, Tpd 为信号线传播延时。如果 Tr≥4Tpd,信号落在安全区域。如果
2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果 Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及
问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线
PCB 板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值 0.25-
0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的
PCB 连线中之后,连线上的最终阻抗称为特征阻抗 Zo。线径越宽,距电源/地越近,或隔离层的介电常数
越高,特征阻抗就越小。如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号最终的稳定状态
将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。随着能量的
减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。这种效应被称为振荡,信号的振荡在信号
的上升沿和下降沿经常可以看到。
(五)、传输线效应
基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
· 反射信号 Re?ected signals
· 延时和时序错误 Delay & Timing errors
· 多次跨越逻辑电平门限错误 False Switching
· 过冲与下冲 Overshoot/Undershoot