# Effects-of-dopamine-on-RL-consolidation-in-PD
The code for analysis and model fitting used in the paper "Effects of dopamine on reinforcement learning and consolidation in Parkinson's disease".
% README.txt
% This code contains the analysis used for the paper "Effects of dopamine on reinforcement learning and consolidation in Parkinson's disease".
% We do not have ethical approval to share participants' data, so we have
% also included a script to generate random data to show how the scripts run.
% You will need to copy all of the files into one folder, and run them from
% there.
% Some of the figures have been disabled as they use functions developed and
% licensed by someone else. I have put links to those functions in the scripts
% but the analysis will run with or without those parts.
% Below is a brief description of the set up, and the list of files you
% should run in which order
%% Data
% There are three experiments in the paper, and they are sometimes referred to by different
% names.
% Experiment 1 often has no moniker, and so files without F1 or F2 in the
% title are for experiment 1.
% Experiment 2 is referred to as F1 in the files.
% Experiment 3 is referred to as F2 in the files.
% Experiment 1 has 4 sessions, one for each of 4 medication conditions,
% that all PD patients complete. Healthy Controls complete one session.
% Each session has a different version of the modified Probabilistic
% Selection Task (PST) run (versions A-D). The files are in the format:
% P101AL1.txt (1st learning block) - version A
% P101AL2.txt (2nd learning block)
% P101AL3.txt (3rd learning block)
% P101AM1.txt (1st memory test = 0 minutes delay)
% P101AM2.txt (2nd memory test = 30 minutes delay)
% P101AM3.txt (3rd memory test = 24 hours delay)
% P101AN1.txt (novel pairs test = 24 hours delay)
% P101BL1.txt (1st learning block) - version B
% and so on for versions B, C and D.
% the day1, day2 and bothDays variables set the conditions for each
% session.
% Controls complete one session, and do not have version numbers in their
% file names.
% Experiment 2 has the same 3 learning blocks, and then novel pairs test
% given immediately after learning, so there are no memory tests, and only
% 2 sessions for PD patients, one ON and OFF meds, and 1 session for
% controls.
% Experiment 3 had a variable number of learning blocks, dependent on their
% performance compared to thresholds, so are all saved in one learning
% file:
% P131AL1.txt
% and then a novel pairs test given immediately afterwards:
% P131AN1.txt
% PD patients were tested ON and OFF meds (2 sessions), and controls did 1
% session.
% The CreateFakeData.m file will generate random data that fits the format
% of the data analysed in the study.
%% files to run
% Here are the orders to run the files in:
%% create fake data
%if you don't have data in the format specified, this will create fake
%random data to test the scripts
CreateFakeData
%% Experiment 1 analysis
DataFiles;%gets file names, sets metadata
BehDataAnalysis%loads up data, processes it
BehGraphs%draw figures in paper
BehFilterAnalysis%run filtering analysis and draw those figures
%% Experiment 2
FDataFiles%get file names for experiments 2 and 3
F1BehDataAnalysis%load up data & analyse
F1BehGraphs%draw figures
%% Experiment 3 analysis
FDataFiles%get file names and metadata for experiments 2 and 3
F2BehDataAnalysis%load up data & analyse
F2BehGraphs%draw figures
%% all 3 experiments
BetweenExptsGraphs % get analysed data from each experiment, combine, figures
BehWinStayAnalysis %run win-stay lose-shift analysis on each experiment, draw figure
%% Model fitting
% These scripts fit Q-learning models with 1 or 2 learning rates to the
% behavioural data for patients, with the same parameters for all
% medication conditions, and with separate learning rates for ON and OFF
% conditions during learning.
QLearnNestedAuto
QLearnNestedTest
没有合适的资源?快使用搜索试试~ 我知道了~
多巴胺对强化学习和巩固的影响一文中使用的分析和模型拟合代码.rar
共33个文件
m:31个
mat:1个
md:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 175 浏览量
2024-12-25
10:57:36
上传
评论
收藏 46KB RAR 举报
温馨提示
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
多巴胺对强化学习和巩固的影响一文中使用的分析和模型拟合代码.rar (33个子文件)
多巴胺对强化学习和巩固的影响一文中使用的分析和模型拟合代码
Effects-of-dopamine-on-RL-consolidation-in-PD-master
condSep.m 205B
BehDataLoad.m 4KB
QLearnNestedPerPp.m 9KB
BehGraphs.m 6KB
FormatForSPSS.m 7KB
SEM.m 478B
WinStayLoseShift.m 4KB
QLearnNestedAuto.m 3KB
DataNames.m 3KB
DataFilesData.mat 3KB
F2BehGraphs.m 4KB
BetweenExptsGraphs.m 5KB
QLearn1Lr.m 2KB
CreateFakeData.m 4KB
FormatForSPSSF1F2.m 8KB
F1BehGraphs.m 5KB
F1BehDataAnalysis.m 6KB
BehWinStayAnalysis.m 4KB
DataSortNP8020.m 4KB
F2BehLoad.m 1KB
MDataSort.m 2KB
QLearnNestedTest.m 4KB
DataSortNPF28020.m 8KB
QLearn2Lr.m 3KB
FDataFiles.m 1KB
DataSortF2.m 3KB
BehDataAnalysis.m 8KB
DataFiles.m 3KB
README.md 4KB
DataSort.m 3KB
F1BehLoad.m 2KB
BehFilterAnalysis.m 4KB
F2BehDataAnalysis.m 9KB
共 33 条
- 1
资源评论
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功