# SSA-ICA-algorithm
This is a demo of SSA-ICA algorithm.
## Notations
1. The main program is "main_SSA_ICA.m".
2. Calling relationship:
- main_SSA_ICA.m
- SSA_ICA.m
- A01_Fast_ICA.m
- A02_diag_average.m
*main_SSA_ICA.m* only generates test data and results visualization, the algorithm used is all implemented in *SSA_ICA.m*.
3. How to call *SSA_ICA.m* as a sub-function: *Sest = SSA_ICA(Yobs,Ns,M)*
Parameter | Description | Type
-|-|-
Yobs | Observed single-channel signal, a row vector. | double |
Ns | How many independent source signals are mixed into Yobs. | int |
M | Decomposition coefficient, indicates the length of the decomposition, which must not exceed half of Yobs. | int |
Sest | The output estimation matrix, each row of which is an estimated signal. | double |
4. Need to manual group since grouping process have not been complished. Using classical SSA, the grouping step can be performed based on the magnitude of eigenvalues of the covariance matrix C.
![1](/figures/1.gif)
5. The decomposition coefficient M should be appropriately large, but not more than half the signal length.
## Demonstration
> **Two independent signals:**
![2](/figures/1.jpg)
> **Obderved signal in single channel (by random mix matrix):**
![3](/figures/2.jpg)
> **Estimated results:**
![4](/figures/3.jpg)
## Reference
[1] A. K. Maddirala and R. A. Shaik, “Separation of sources from single-channel eeg signals using independent component analysis,”IEEETransactions on Instrumentation and Measurement, vol. 67, no. 2, pp.382–393, 2018.
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 1万+
最新资源
- 三相异步电机转速电流双闭环矢量控制 Matlab Simulink仿真模型(成品) 采用双闭环PI控制,转矩突变时跟踪性能较好
- Iconize for Mac v1.5
- 卡尔曼滤波家族-锂离子电池soc估算模型-matlab程序-simulink模型-汇总
- Data Guardian for Mac v7.6.9
- 是的是的哦i阿斯还是哦
- 光伏并网模型 Matlab Simulink仿真模型(成品) 1、光伏电池经过逆变器并网包含MPPT计算
- 基于hadoop的个性化图书推荐系统的毕业设计与实现
- fpga实现cnn神经网络加速 手写字硬件加速 FPGA artix7-100t 纯verilog编写 神经网络硬件加速 使用ov5640摄像头dvp接口 verilog实现手写字识别
- 全新UI短剧搜索分享系统网站源码
- WORD办公教程网站模板 (H5自适应) WPS办公资源源码
- 萌宠桌宠键盘跟随软件!
- ARM Cortex-M3架构STM32F103微控制器数据手册:架构、特性和应用指南
- 光流法:适合大范围的场景,能精准检测运动方向 背景减除法:适用于背景固定且物体较为明显的场景 帧差法:简单易用,适合背景静止的场景 特征点跟踪法:适用于检测物体运动的细节和小范围的变化 深度学
- 导航系统DHPro4.1.3开心版
- ch07配套资源:图像处理与卷积神经网络(CNN)实战指南
- Annie推广导航开心免授权版本
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈