![](https://github.com/cdeldon/thermography/blob/master/docs/source/_static/logo.png?raw=true "Thermography Logo")
Branch|Linux|Windows|
:----:|:----:|:----:|
Master|[![BuildStatusMaster](https://travis-ci.org/cdeldon/thermography.svg?branch=master)](https://travis-ci.org/cdeldon)|[![BuildStatusMasterWin](https://ci.appveyor.com/api/projects/status/ve3xbuictiakc5cj/branch/master?svg=true&passingText=passing)](https://ci.appveyor.com/project/cdeldon/thermography/branch/master)
Devel|[![BuildStatusDev](https://travis-ci.org/cdeldon/thermography.svg?branch=devel)](https://travis-ci.org/cdeldon)|[![BuildStatusMasterWin](https://ci.appveyor.com/api/projects/status/ve3xbuictiakc5cj/branch/devel?svg=true&passingText=passing)](https://ci.appveyor.com/project/cdeldon/thermography/branch/devel)
This repository contains the implementation of a feasibility study for automatic detection of defected solar panel modules.
The developed framework has been coined _Thermography_ due to the fact that the input data to the system is a sequence of images in the infrared spectrum.
![Thermography in action](docs/source/_static/example-view.gif)
### Structure
The repository is structured as follows:
1. [Documentation](docs) of the _Thermography_ repository.
2. [GUI](gui) source code associated to the graphical user interface for interacting with the _Thermography_ framework.
3. [Log files](logs) generated at runtime.
4. [Resources](resources) used by the _Thermography_ framework.
5. [Thermography](thermography) core source code related to detection and classification of solar panel modules.
The _python_ scripts located in the root directory can be used to launch different executables which exploit the _Thermography_ framework for solar panel module detection and classification.
### Installation
*Thermography* has been tested using the 64-bit version of *python 3.5*.
If you are using an other version of python, consider installing and using *Thermography* inside a virtual environment.
#### System-wide installation
Here follow the steps to install *Thermography* system-wide.
##### Get the source
Download the git repository:
``` lang=bash
$ git clone https://github.com/cdeldon/thermography.git
$ cd thermography/
```
Or download the following [zip](https://github.com/cdeldon/thermography/archive/master.zip).
##### Prerequisites
Install the prerequisites:
``` lang=bash
$ pip install -r requirements.txt
```
#### Anaconda
Here follow the steps to install *Thermography* in a virtual environment created using [Anaconda](https://www.anaconda.com/download/).
##### Get the source
Download the git repository:
``` lang=bash
$ git clone https://github.com/cdeldon/thermography.git
$ cd thermography/
```
Or download the following [zip](https://github.com/cdeldon/thermography/archive/master.zip).
##### Virtual environment
Create a new virtual environment
``` lang=bash
$ conda create --name my_env python=3.5
$ activate my_env
```
##### Prerequisites
Install the prerequisites:
``` lang=bash
(my_env) $ pip install -r requirements.txt
```
### Example scripts
Here follows a description of the example scripts in the [root](.) directory of the _Thermography_ repository.
##### Application
Running the [main_app.py](main_app.py) script a default video is loaded and each frame is processed for module extraction.
This script's purpose is to show the workflow of the _Thermography_ framework for a simple video.
##### GUIs
A graphical user interface is provided for interacting with the _Thermography_ framework. In particular the following executables are available:
1. [Dataset creation](main_create_dataset.py) script used to facilitate the creation of a labeled dataset of images representing solar panel modules.
2. [ThermoGUI](main_thermogui.py) graphical interface which allows the used to interact with the _Thermography_ framework and to analyze a new sequence of frames on the fly.
The executables with a graphical interface offer the following tools and visualizations:
![GUI](./docs/source/_static/gui_video.PNG?raw=true "GUI")
The GUI presents different views of the processed input video, in particular the following views are available:
Attention image|Edge image
:---:|:---:
![AtteImage](./docs/source/_static/attention_image.PNG?raw=true "Attention image")|![EdgeImage](./docs/source/_static/edge_image.PNG?raw=true "Edge image")
Segment image|Rectangle image
:---:|:---:
![SegmImage](./docs/source/_static/segments_image.PNG?raw=true "Segment Image")|![RectImage](./docs/source/_static/rectangle_image.PNG?raw=true "Rectangle Image")
The lateral toolbar offers runtime parameter tuning with immediate application:
Video tab|Prepr. tab|Segment tab|Modules tab
:---:|:---:|:---:|:---:
![VideoTab](./docs/source/_static/video_tab.PNG?raw=true "Video tab")|![PreprTab](./docs/source/_static/preprocessing_tab.PNG?raw=true "Preprocessing Tab")|![SegmeTab](./docs/source/_static/segments_tab.PNG?raw=true "Segments Tab")|![ModulTab](./docs/source/_static/modules_tab.PNG?raw=true "Modules Tab")
##### Training and restoring
Executables for training and restoring a learning system are offered with the _Thermography_ framework.
These scripts can be used and adapted for training a new classifier which can the be integrated with the GUIs for real time classification of the detected solar panel modules.
1. [Training](main_training.py) trains a model to classify input images with the correct label.
2. [Restoring](main_training_restorer.py) restores a trained model with associated weights and outputs the classification for a set of input images.
### Tests
The base functionalities of the _Thermography_ framework are tested using [unittests](https://docs.python.org/3/library/unittest.html).
The tests can be executed as follows:
```lang=bash
$ cd thermography/
$ python -m unittest discover thermography/test [-v]
```
The same tests can be run as a normal python script as follows:
```lang=bash
$ cd thermography/
$ python main_test.py
```
### Documentation
The documentation of the code is available [here](https://cdeldon.github.io/thermography/).
没有合适的资源?快使用搜索试试~ 我知道了~
光伏电池板红外缺陷检测系统软件附python代码.zip
共325个文件
png:105个
html:61个
py:61个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 196 浏览量
2023-04-05
09:04:57
上传
评论
收藏 82.45MB ZIP 举报
温馨提示
1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
资源推荐
资源详情
资源评论
收起资源包目录
光伏电池板红外缺陷检测系统软件附python代码.zip (325个子文件)
make.bat 778B
.buildinfo 230B
theme.css 110KB
basic.css 10KB
pygments.css 4KB
badge_only.css 3KB
thermo_theme.css 581B
thermo_theme.css 581B
ThermoNet3x3.data-00000-of-00001 4.67MB
thermography.detection.doctree 124KB
thermography.utils.doctree 112KB
thermography.test.doctree 69KB
thermography.doctree 68KB
thermography.classification.dataset.doctree 57KB
gui.threads.doctree 45KB
thermography.classification.utils.doctree 45KB
thermography.classification.models.doctree 40KB
gui.dialogs.doctree 40KB
thermography.io.doctree 39KB
index.doctree 37KB
README.doctree 35KB
thermography.settings.doctree 34KB
gui.design.doctree 26KB
thermography.classification.doctree 20KB
gui.doctree 4KB
fontawesome-webfont.eot 75KB
example-view.gif 5.98MB
example-view.gif 5.98MB
example-view.gif 5.98MB
ajax-loader.gif 673B
.gitkeep 0B
.gitkeep 0B
thermo_gui_design.html 304KB
create_dataset_gui.html 269KB
test_geometry.html 100KB
create_dataset_dialog.html 97KB
thermo_gui_dialog.html 86KB
thermo_dataset.html 76KB
geometry.html 74KB
thermo_app.html 74KB
genindex.html 51KB
thermography.utils.html 44KB
segment_clustering.html 43KB
thermography.detection.html 43KB
module_map.html 42KB
display.html 35KB
image_saving_dialog.html 31KB
thermography.html 31KB
thermography.test.html 30KB
thermo_thread.html 29KB
preprocessing.html 29KB
thermography.classification.dataset.html 28KB
image_saving_gui.html 25KB
inference.html 25KB
io.html 23KB
thermo_net_3x3.html 22KB
base_net.html 21KB
webcam_dialog.html 21KB
thermography.classification.models.html 21KB
webcam_dialog_design.html 20KB
camera.html 20KB
rectangle_detection.html 20KB
gui.threads.html 20KB
operations.html 20KB
thermography.classification.utils.html 20KB
gui.dialogs.html 18KB
segment_detection.html 18KB
py-modindex.html 17KB
intersection_detection.html 17KB
thermography.io.html 17KB
thermo_net.html 17KB
thermography.settings.html 16KB
thermography.classification.html 15KB
edge_detection.html 15KB
index.html 14KB
gui.design.html 13KB
paths.html 13KB
thermo_thread_dataset_creation.html 13KB
test_images.html 13KB
README.html 13KB
kernel_summaries.html 11KB
about_dialog.html 11KB
motion_detection.html 11KB
images.html 9KB
logger.html 8KB
index.html 8KB
test_ID.html 8KB
ID.html 7KB
modes.html 6KB
gui.html 6KB
search.html 5KB
about_rich_text.html 569B
index.html 114B
ThermoNet3x3.index 1KB
objects.inv 3KB
jquery-3.1.0.js 258KB
jquery.js 84KB
underscore-1.3.1.js 34KB
searchindex.js 27KB
searchtools.js 25KB
共 325 条
- 1
- 2
- 3
- 4
资源评论
- 2301_767428182024-11-30这个资源总结的也太全面了吧,内容详实,对我帮助很大。
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Springboot+Vue的信息技术知识竞赛系统的设计-毕业源码案例设计(高分项目).zip
- chrom,edge浏览器插件
- 快速定制中国传统节日头像(全套源码) 开箱即用
- 基于Springboot+Vue的新闻推荐系统毕业源码案例设计(高分项目).zip
- 12MONTHTEXTTEST
- 基于springboot+vue的学生干部管理系统-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue的学生心理咨询评估系统毕业源码案例设计(95分以上).zip
- 基于Springboot+Vue的学生用品采购系统-毕业源码案例设计(源码+数据库).zip
- 机器学习实战:结合随机森林(RF)与递归特征消除和交叉验证(RFECV)进行精准特征选择,使用LightGBM与过采样技术应对极度不均衡的正负样本,并通过SHAP进行模型解释的电信客户流失预测
- 基于Springboot+Vue的医药管理系统-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue的药店管理系统的设计与实现-毕业源码案例设计(源码+论文).zip
- 基于Springboot+Vue的医院挂号就诊系统-毕业源码案例设计(源码+论文).zip
- 基于Springboot+Vue的疫情隔离管理系统-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue的医院药品管理系统设计与实现-毕业源码案例设计(源码+项目说明+演示视频).zip
- 基于Springboot+Vue的医院资源管理系统-毕业源码案例设计(高分项目).zip
- 酒驾风险行为数据集.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功