<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
 
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<img src="https://user-images.githubusercontent.com/26833433/103594689-455e0e00-4eae-11eb-9cdf-7d753e2ceeeb.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
## Pretrained Checkpoints
| Model | size | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>V100</sub> | FPS<sub>V100</sub> || params | GFLOPS |
|---------- |------ |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases) |640 |36.8 |36.8 |55.6 |**2.2ms** |**455** ||7.3M |17.0
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases) |640 |44.5 |44.5 |63.1 |2.9ms |345 ||21.4M |51.3
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases) |640 |48.1 |48.1 |66.4 |3.8ms |264 ||47.0M |115.4
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) |640 |**50.1** |**50.1** |**68.7** |6.0ms |167 ||87.7M |218.8
| | | | | | | || |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA |832 |**51.9** |**51.9** |**69.6** |24.9ms |40 ||87.7M |1005.3
<!---
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |640 |49.0 |49.0 |67.4 |4.1ms |244 ||77.2M |117.7
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |1280 |53.0 |53.0 |70.8 |12.3ms |81 ||77.2M |117.7
--->
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment`
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Inference
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on example images in `data/images`:
```bash
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB
没有合适的资源?快使用搜索试试~ 我知道了~
Python毕业设计-基于深度学习的垃圾分类目标检测系统(前后端源码+运行说明文档).zip
共118个文件
py:27个
yaml:18个
json:10个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 63 浏览量
2025-01-04
14:56:24
上传
评论
收藏 7.36MB ZIP 举报
温馨提示
基于深度学习的垃圾分类目标检测系统(前后端源码+运行说明文档).zip 该项目是个人大作业项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 一、搭建运行环境(python后端) 安装anconda,创建anconda虚拟环境。 在创建anconda虚拟环境前,先对conda进行换源,不然速度特别慢。 conda换源方法: 创建虚拟环境: 在终端输入命令(例如heqiaoling是自己虚拟环境的名称) conda create -n heqiaoling python=3.8 激活虚拟环境,在终端输入命令 activate heqiaoling 激活成功应在最前边括号中显示heqiaoling pip换源方法: https://zhuanlan.zhihu.com/p/345161094 在pip换源后,安装程序所需的环境。 在有requirements目录下(sever文件夹中),终端运行以下命令,等待安
资源推荐
资源详情
资源评论
收起资源包目录
Python毕业设计-基于深度学习的垃圾分类目标检测系统(前后端源码+运行说明文档).zip (118个子文件)
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.DS_Store 8KB
.DS_Store 6KB
.DS_Store 6KB
.gitattributes 75B
.gitignore 4KB
index.html 1KB
tutorial.ipynb 384KB
top1.jpg 549KB
top2.jpg 132KB
top.jpg 43KB
th.jpg 31KB
jquery-1.11.3.js 278KB
legend.js 3KB
photo_album.js 3KB
camera.js 3KB
index.js 2KB
know.js 841B
util.js 460B
app.js 364B
logs.js 305B
project.config.json 1KB
app.json 1KB
project.private.config.json 373B
sitemap.json 191B
logs.json 77B
index.json 27B
camera.json 27B
legend.json 27B
know.json 27B
photo_album.json 27B
LICENSE 34KB
README.md 11KB
readme.md 2KB
bug-report.md 2KB
feature-request.md 737B
question.md 140B
cylj.png 197KB
yhlj.png 196KB
qtlj.png 191KB
khsw.png 184KB
camera.png 6KB
photo_album.png 6KB
home.png 1KB
know.png 1KB
legend.png 1016B
datasets.py 43KB
train.py 33KB
general.py 24KB
plots.py 18KB
test.py 17KB
wandb_utils.py 14KB
common.py 13KB
yolo.py 12KB
torch_utils.py 12KB
loss.py 9KB
metrics.py 9KB
detect.py 8KB
detector.py 8KB
autoanchor.py 7KB
hubconf.py 5KB
experimental.py 5KB
google_utils.py 5KB
detector_old.py 5KB
export.py 4KB
server.py 3KB
activations.py 2KB
resume.py 1KB
log_dataset.py 809B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
mime.sh 780B
download_weights.sh 277B
simsun.ttc 10.01MB
requirements.txt 606B
additional_requirements.txt 105B
know.wxml 1KB
camera.wxml 605B
index.wxml 587B
legend.wxml 423B
photo_album.wxml 352B
logs.wxml 197B
index.wxss 2KB
photo_album.wxss 2KB
camera.wxss 2KB
know.wxss 282B
app.wxss 217B
logs.wxss 106B
legend.wxss 34B
anchors.yaml 3KB
yolov5-p7.yaml 2KB
yolov5x6.yaml 2KB
yolov5s6.yaml 2KB
yolov5m6.yaml 2KB
yolov5l6.yaml 2KB
共 118 条
- 1
- 2
资源评论
荒野大飞
- 粉丝: 1w+
- 资源: 2797
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【岗位说明】房地产销售经理岗位职责.doc
- 【岗位说明】房地产销售经理岗位职责(共6篇).doc
- 【岗位说明】房地产销售人员岗位职责.doc
- 【岗位说明】某地产企业行政管理部后勤管理职务说明书.doc
- 【岗位说明】万科房地产组织架构与职责权限.doc
- 【岗位说明】房地产财务岗位职责.docx
- 【岗位说明】房地产办公室主任岗位职责.docx
- 【岗位说明】房地产公司各岗位职责01.docx
- 【岗位说明】房地产公司各岗位职责02.docx
- 【岗位说明】房地产工程部岗位职责.docx
- 【岗位说明】房地产营销管理部各岗位工作职责.docx
- 【岗位说明】房地产销售总监岗位职责.docx
- 进出口数据Excel+dta格式.txt
- 【岗位说明】供水公司岗位职责.doc
- 【岗位说明】供水站岗位职责.doc
- 【岗位说明】自来水公司管理所所长岗位职责.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功