//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.calib3d;
import java.util.ArrayList;
import java.util.List;
import org.opencv.calib3d.UsacParams;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDouble;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.MatOfPoint3f;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.core.TermCriteria;
import org.opencv.utils.Converters;
// C++: class Calib3d
public class Calib3d {
// C++: enum <unnamed>
public static final int
CV_ITERATIVE = 0,
CV_EPNP = 1,
CV_P3P = 2,
CV_DLS = 3,
CvLevMarq_DONE = 0,
CvLevMarq_STARTED = 1,
CvLevMarq_CALC_J = 2,
CvLevMarq_CHECK_ERR = 3,
LMEDS = 4,
RANSAC = 8,
RHO = 16,
USAC_DEFAULT = 32,
USAC_PARALLEL = 33,
USAC_FM_8PTS = 34,
USAC_FAST = 35,
USAC_ACCURATE = 36,
USAC_PROSAC = 37,
USAC_MAGSAC = 38,
CALIB_CB_ADAPTIVE_THRESH = 1,
CALIB_CB_NORMALIZE_IMAGE = 2,
CALIB_CB_FILTER_QUADS = 4,
CALIB_CB_FAST_CHECK = 8,
CALIB_CB_EXHAUSTIVE = 16,
CALIB_CB_ACCURACY = 32,
CALIB_CB_LARGER = 64,
CALIB_CB_MARKER = 128,
CALIB_CB_SYMMETRIC_GRID = 1,
CALIB_CB_ASYMMETRIC_GRID = 2,
CALIB_CB_CLUSTERING = 4,
CALIB_NINTRINSIC = 18,
CALIB_USE_INTRINSIC_GUESS = 0x00001,
CALIB_FIX_ASPECT_RATIO = 0x00002,
CALIB_FIX_PRINCIPAL_POINT = 0x00004,
CALIB_ZERO_TANGENT_DIST = 0x00008,
CALIB_FIX_FOCAL_LENGTH = 0x00010,
CALIB_FIX_K1 = 0x00020,
CALIB_FIX_K2 = 0x00040,
CALIB_FIX_K3 = 0x00080,
CALIB_FIX_K4 = 0x00800,
CALIB_FIX_K5 = 0x01000,
CALIB_FIX_K6 = 0x02000,
CALIB_RATIONAL_MODEL = 0x04000,
CALIB_THIN_PRISM_MODEL = 0x08000,
CALIB_FIX_S1_S2_S3_S4 = 0x10000,
CALIB_TILTED_MODEL = 0x40000,
CALIB_FIX_TAUX_TAUY = 0x80000,
CALIB_USE_QR = 0x100000,
CALIB_FIX_TANGENT_DIST = 0x200000,
CALIB_FIX_INTRINSIC = 0x00100,
CALIB_SAME_FOCAL_LENGTH = 0x00200,
CALIB_ZERO_DISPARITY = 0x00400,
CALIB_USE_LU = (1 << 17),
CALIB_USE_EXTRINSIC_GUESS = (1 << 22),
FM_7POINT = 1,
FM_8POINT = 2,
FM_LMEDS = 4,
FM_RANSAC = 8,
fisheye_CALIB_USE_INTRINSIC_GUESS = 1 << 0,
fisheye_CALIB_RECOMPUTE_EXTRINSIC = 1 << 1,
fisheye_CALIB_CHECK_COND = 1 << 2,
fisheye_CALIB_FIX_SKEW = 1 << 3,
fisheye_CALIB_FIX_K1 = 1 << 4,
fisheye_CALIB_FIX_K2 = 1 << 5,
fisheye_CALIB_FIX_K3 = 1 << 6,
fisheye_CALIB_FIX_K4 = 1 << 7,
fisheye_CALIB_FIX_INTRINSIC = 1 << 8,
fisheye_CALIB_FIX_PRINCIPAL_POINT = 1 << 9,
fisheye_CALIB_ZERO_DISPARITY = 1 << 10,
fisheye_CALIB_FIX_FOCAL_LENGTH = 1 << 11;
// C++: enum GridType (cv.CirclesGridFinderParameters.GridType)
public static final int
CirclesGridFinderParameters_SYMMETRIC_GRID = 0,
CirclesGridFinderParameters_ASYMMETRIC_GRID = 1;
// C++: enum HandEyeCalibrationMethod (cv.HandEyeCalibrationMethod)
public static final int
CALIB_HAND_EYE_TSAI = 0,
CALIB_HAND_EYE_PARK = 1,
CALIB_HAND_EYE_HORAUD = 2,
CALIB_HAND_EYE_ANDREFF = 3,
CALIB_HAND_EYE_DANIILIDIS = 4;
// C++: enum LocalOptimMethod (cv.LocalOptimMethod)
public static final int
LOCAL_OPTIM_NULL = 0,
LOCAL_OPTIM_INNER_LO = 1,
LOCAL_OPTIM_INNER_AND_ITER_LO = 2,
LOCAL_OPTIM_GC = 3,
LOCAL_OPTIM_SIGMA = 4;
// C++: enum NeighborSearchMethod (cv.NeighborSearchMethod)
public static final int
NEIGH_FLANN_KNN = 0,
NEIGH_GRID = 1,
NEIGH_FLANN_RADIUS = 2;
// C++: enum PolishingMethod (cv.PolishingMethod)
public static final int
NONE_POLISHER = 0,
LSQ_POLISHER = 1,
MAGSAC = 2,
COV_POLISHER = 3;
// C++: enum RobotWorldHandEyeCalibrationMethod (cv.RobotWorldHandEyeCalibrationMethod)
public static final int
CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0,
CALIB_ROBOT_WORLD_HAND_EYE_LI = 1;
// C++: enum SamplingMethod (cv.SamplingMethod)
public static final int
SAMPLING_UNIFORM = 0,
SAMPLING_PROGRESSIVE_NAPSAC = 1,
SAMPLING_NAPSAC = 2,
SAMPLING_PROSAC = 3;
// C++: enum ScoreMethod (cv.ScoreMethod)
public static final int
SCORE_METHOD_RANSAC = 0,
SCORE_METHOD_MSAC = 1,
SCORE_METHOD_MAGSAC = 2,
SCORE_METHOD_LMEDS = 3;
// C++: enum SolvePnPMethod (cv.SolvePnPMethod)
public static final int
SOLVEPNP_ITERATIVE = 0,
SOLVEPNP_EPNP = 1,
SOLVEPNP_P3P = 2,
SOLVEPNP_DLS = 3,
SOLVEPNP_UPNP = 4,
SOLVEPNP_AP3P = 5,
SOLVEPNP_IPPE = 6,
SOLVEPNP_IPPE_SQUARE = 7,
SOLVEPNP_SQPNP = 8,
SOLVEPNP_MAX_COUNT = 8+1;
// C++: enum UndistortTypes (cv.UndistortTypes)
public static final int
PROJ_SPHERICAL_ORTHO = 0,
PROJ_SPHERICAL_EQRECT = 1;
//
// C++: void cv::Rodrigues(Mat src, Mat& dst, Mat& jacobian = Mat())
//
/**
* Converts a rotation matrix to a rotation vector or vice versa.
*
* @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
* @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
* @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
* derivatives of the output array components with respect to the input array components.
*
* \(\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta} ) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\)
*
* Inverse transformation can be also done easily, since
*
* \(\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\)
*
* A rotation vector is a convenient and most compact representation of a rotation matrix (since any
* rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
* optimization procedures like REF: calibrateCamera, REF: stereoCalibrate, or REF: solvePnP .
*
* <b>Note:</b> More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
* can be found in:
* <ul>
* <li>
* A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi CITE: Gallego2014ACF
* </li>
* </ul>
*
* <b>Note:</b> Useful information on SE(3) and Lie Groups can be found in:
* <ul>
* <li>
* A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco CITE: blanco2010tutorial
* </li>
* <li>
* Lie Groups for 2D and 3D Transformation, Ethan Eade CITE: Eade17
* </li>
* <li>
* A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan CITE: Sol2018AML
* </li>
* </ul>
*/
public static void Rodrigues(Mat src, Mat dst, Mat jacobian) {
Rodrigues_0(src.nativeObj, dst.nativeObj, jacobian.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. *
资源推荐
资源详情
资源评论
收起资源包目录
基于深度学习和计算机视觉的实时人体姿态估计技术应用于医疗服务场景.zip (1729个子文件)
liblibprotobuf.a 47.43MB
libIlmImf.a 38.04MB
liblibprotobuf.a 31.04MB
libIlmImf.a 29.08MB
libopencv_gapi.a 23.58MB
libopencv_dnn.a 16.64MB
libopencv_gapi.a 15.85MB
libopencv_dnn.a 13.28MB
libopencv_core.a 6.33MB
libopencv_core.a 6.12MB
liblibwebp.a 6.08MB
libopencv_imgproc.a 5.47MB
libopencv_imgproc.a 5.38MB
liblibjpeg-turbo.a 4.55MB
libtbb.a 4.43MB
libopencv_calib3d.a 4.42MB
libopencv_calib3d.a 3.99MB
libtbb.a 3.21MB
liblibtiff.a 3.09MB
liblibwebp.a 2.96MB
liblibjpeg-turbo.a 2.84MB
liblibopenjp2.a 2.74MB
libopencv_objdetect.a 2.49MB
liblibtiff.a 2.01MB
libopencv_objdetect.a 1.97MB
liblibpng.a 1.77MB
liblibopenjp2.a 1.68MB
libopencv_features2d.a 1.66MB
libopencv_stitching.a 1.47MB
libopencv_ml.a 1.46MB
libopencv_features2d.a 1.4MB
libopencv_imgcodecs.a 1.36MB
libopencv_flann.a 1.31MB
libopencv_ml.a 1.3MB
libopencv_imgcodecs.a 1.28MB
libopencv_stitching.a 1.16MB
libopencv_photo.a 1.13MB
libopencv_flann.a 1.12MB
libopencv_videoio.a 1.1MB
libopencv_photo.a 1.09MB
liblibpng.a 1.09MB
libopencv_video.a 1.08MB
libopencv_videoio.a 1.04MB
libopencv_video.a 936KB
libtegra_hal.a 891KB
libtegra_hal.a 876KB
libade.a 814KB
libade.a 511KB
libopencv_highgui.a 443KB
libopencv_highgui.a 411KB
libittnotify.a 148KB
libittnotify.a 123KB
libcpufeatures.a 36KB
libcpufeatures.a 28KB
libquirc.a 26KB
libquirc.a 20KB
libopencv_jni_shared.a 880B
ade-LICENSE 11KB
OpenCVEngineInterface.aidl 995B
gradlew.bat 3KB
build_command_opencv_jni_shared.bat 188B
end2end.bin 12.72MB
end2end.bin 3.8MB
previous-compilation-data.bin 22KB
desugar_graph.bin 235B
results.bin 8B
results.bin 3B
ittnotify-LICENSE.BSD 1KB
Calib3d.class 107KB
Calib3d.class 107KB
Imgproc.class 98KB
Imgproc.class 98KB
Core.class 43KB
Core.class 43KB
Mat.class 25KB
Mat.class 25KB
Converters.class 24KB
Converters.class 24KB
Photo.class 20KB
Photo.class 20KB
Dnn.class 20KB
Dnn.class 20KB
Videoio.class 19KB
Videoio.class 19KB
HOGDescriptor.class 14KB
HOGDescriptor.class 14KB
CameraBridgeViewBase.class 13KB
CameraBridgeViewBase.class 13KB
Net.class 12KB
Net.class 12KB
Features2d.class 12KB
Features2d.class 12KB
Video.class 12KB
Video.class 12KB
CameraGLRendererBase.class 12KB
CameraGLRendererBase.class 12KB
DetectorParameters.class 11KB
DetectorParameters.class 11KB
Camera2Renderer.class 11KB
Camera2Renderer.class 11KB
共 1729 条
- 1
- 2
- 3
- 4
- 5
- 6
- 18
资源评论
生瓜蛋子
- 粉丝: 3913
- 资源: 7441
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于STM32F103C8T6的4g模块(air724ug)
- 基于Java技术的ASC学业支持中心并行项目开发设计源码
- 基于Java和微信支付的wxmall开源卖票商城设计源码
- 基于Java和前端技术的东软环保公众监督系统设计源码
- 基于Python、HTML、CSS的crawlerdemo软件工程实训爬虫设计源码
- 基于多智能体深度强化学习的边缘协同任务卸载方法设计源码
- 基于BS架构的Java、Vue、JavaScript、CSS、HTML整合的毕业设计源码
- 基于昇腾硬件加速的AI大模型性能优化设计源码
- 基于Plpgsql与Python FastAPI的mini-rbac-serve权限管理系统后端设计源码
- 基于SpringBoot的轻量级Java快速开发源码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功