# EfficientDet_PyTorch
注意事项(NOTICE):
1. 训练请使用SGD优化器(with momentum 0.9). 不要使用Adam. 会造成不收敛.
Use SGD optimizer for training(with momentum 0.9). Do not use Adam. It will cause a nonconvergence
2. 有两个分支(branch),一个是按照论文书写(official)、一个是参考`zylo117`的代码(master),
并使用了他的预训练模型书写(万分感谢),请按实际情况选择
There are two branches, one(official) was written according to the paper,
the other(master) was written referring to the code of 'Zylo117' and use his pre-training model(thank you very much),
please choose according to the actual situation
3. `train_example.py` 的意义是展示模型输入的格式
The meaning of `train_example.py` is to show the format of the model input
4. 自己训练的时候,请使用`EfficientNet`预训练模型(推荐使用official)
Use 'EfficientNet' pre-training model when you train yourself
(Official is recommended)
## Reference
1. 论文(paper):
[https://arxiv.org/pdf/1911.09070.pdf](https://arxiv.org/pdf/1911.09070.pdf)
2. 代码参考(reference code):
[https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch](https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch)
3. EfficientNet 主干网代码来源(Backbone code source):
[https://github.com/Jintao-Huang/EfficientNet_PyTorch](https://github.com/Jintao-Huang/EfficientNet_PyTorch)
4. 预训练模型来自(The pre-training model comes from):
[https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch](https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch)
因为修改了模型,所以我把预训练模型的state_dict进行了重组,并进行发布
(Because I changed the model, I reorganized the state_dict for the pretraining model and release it)
5. VOC0712 数据集链接
链接:[https://pan.baidu.com/s/17iop7UBnSGExW64cip-pYw](https://pan.baidu.com/s/17iop7UBnSGExW64cip-pYw)
提取码:sdvx
权重见 release. 或在百度云中下载:
链接:[https://pan.baidu.com/s/1VrO0eBmSHlB8_haEJ7WbuA](https://pan.baidu.com/s/1VrO0eBmSHlB8_haEJ7WbuA)
提取码:2kq9
## 使用方式(How to use)
#### 1. 预测图片(Predict images)
```
python3 pred_image.py
```
#### 2. 预测视频(Predict video)
```
python3 pred_video.py
```
#### 3. 简单的训练案例(Simple training cases)
```
python3 train_example.py
```
#### 4. 训练
```
python3 make_dataset.py
python3 train.py
```
## 性能
如果打不开可在`images/`与`docs/`文件夹中查看
![性能](./docs/性能对比可视化.png)
#### d0效果
![原图片](./images/1.png)
![检测图片](./images/1_d0.jpg)
## 运行环境(environment)
torch 1.7.1
torchvision 0.8.2