# recommendation-system
基于协同过滤的推荐系统算法研究
没有合适的资源?快使用搜索试试~ 我知道了~
基于协同过滤的推荐系统算法研究.zip
共9个文件
java:3个
xml:2个
test:1个
需积分: 5 1 下载量 34 浏览量
2024-05-19
21:56:40
上传
评论
收藏 5KB ZIP 举报
温馨提示
协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。
资源推荐
资源详情
资源评论
收起资源包目录
基于协同过滤的推荐系统算法研究.zip (9个子文件)
content
pom.xml 985B
src
main
resources
u1.test 15B
u1.base 111B
java
MovieDataHandler.java 1KB
RelationObject.java 1KB
Main.java 6KB
webapp
WEB-INF
web.xml 215B
index.jsp 52B
README.md 70B
共 9 条
- 1
资源评论
生瓜蛋子
- 粉丝: 3918
- 资源: 7441
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【在线商城系统】需求分析-系统设计-源码开发
- Springboot 集成Beetl模板
- 【java毕业设计】房屋交易平台的设计与实现源码(springboot+vue+mysql+说明文档+LW).zip
- java就业信息管理系统源码带本地搭建教程数据库 MySQL源码类型 WebForm
- 电子商务的发展战略.ppt
- 【java毕业设计】疗养院管理系统的设计与实现源码(springboot+vue+mysql+说明文档+LW).zip
- MES 提供实现从订单下达到完成产品的生产活动优化所需的信息; 运用及时准确的数据, 指导、启动、响应并记录车间生产活动,能够对 生产条件的变化做出迅速的响应,从而减少非增值活动,提高效率
- 【java毕业设计】大学生就业需求分析系统源码(springboot+vue+mysql+说明文档+LW).zip
- 【java毕业设计】青年公寓服务平台源码(springboot+vue+mysql+说明文档+LW).zip
- 全能翻译官1.10.3.1会员版=推荐.apk
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功