基于pytorch和numpy的贪吃蛇强化学习模型
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
基于pytorch和numpy的贪吃蛇强化学习模型 强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
- 1
- 粉丝: 3926
- 资源: 7441
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 机械设计螺母自动组装成方管并焊接机sw18全套设计资料100%好用.zip.zip
- 机械设计零件防错视觉检测机(sw18可编辑+工程图+BOM)全套设计资料100%好用.zip.zip
- 机械设计流水线机器人装盘机sw21全套设计资料100%好用.zip.zip
- 机械设计磨床输送机 磨削输送机sw21全套设计资料100%好用.zip.zip
- 机械设计螺丝装袋塑封机2018可编辑全套设计资料100%好用.zip.zip
- 机械设计铝条点胶贴合机sw21全套设计资料100%好用.zip.zip
- 机械设计内径公差测定器sw16可编辑全套设计资料100%好用.zip.zip
- 机械设计木勺的设备sw18全套设计资料100%好用.zip.zip
- 机械设计偏光镜贴合机sw21全套设计资料100%好用.zip.zip
- 机械设计乒乓球上打孔插入塞子机sw21全套设计资料100%好用.zip.zip
- 机械设计平板电脑自动贴双面胶带机sw14可编辑全套设计资料100%好用.zip.zip
- 联想M7450F打印机官方驱动安装程序
- 电热锅炉供暖系统的仿人智能控制器的设计与研究
- 基于ARM9的无线数据采集系统研究与设计
- 二相混合式步进电机细分控制技术研究及驱动器的设计
- 基于FPGA的多通道多速率信号传输研究与设计