# GCN_predict-Pytorch
Traffic flow predict. Implementation of graph convolutional network(GCN,GAT,Chebnet) with PyTorch
Requirements:
- Pytorch
- Numpy
- Pandas
- Matplotlib
Example Dataset:
The datasets are collected by the Caltrans Performance Measurement System (PEMS-04)
Numbers:307 detectors
Date:Jan to Feb in 2018 (2018.1.1——2018.2.28)
Features:flow, occupy, speed.
Exploring data analysis:
1.there is three features:flow,occupy and speed.First, we conduct a visual analysis of data distribution
2.run code: python data_view.py
3.Every node(detector) has three fetures,but two features data distribution are basically stationary, so we only take the first dimension features.
Read dataset:
In the traffic_dataset.py file,the get_adjacent_matrix and get_flow_data functions are to read adjacent matrix and flow data.
Model training:
In the traffic_preditcion.py,there are three graph convolution neural network models:GCN,ChenNET and GAT.Correspondingly, you only need to modify the 45th line of code in this file, and then observe the different results of model training.
python traffic_preditcion.py
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
Pytorch-基于GCN-GAT-Cebnet图神经网络的交通流预测实现-图神经网络交通流预测.zip (17个子文件)
Traffic-Flow-Prediction-with-Graph-Neural-Networks-main
utils.py 2KB
select the first feature.png 83KB
gat.py 4KB
chebnet.py 5KB
gat_node_120.png 44KB
LICENSE 1KB
gcnnet.py 2KB
GAT_result.h5 18.89MB
PeMS_04
PeMS04.npz 31.43MB
PeMS04.csv 4KB
traffic_dataset.py 11KB
.gitignore 3KB
dataView.py 4KB
traffic_prediction.py 9KB
README.md 1KB
node_ 10_3.png 43KB
Pytorch-基于GCN-GAT-Chebnet图神经网络实现的交通流预测_Traffic-Flow-Prediction-with-Graph-Neural-Networks
项目内附说明
如果解压失败请用ara软件解压.txt 42B
共 17 条
- 1
资源评论
好家伙VCC
- 粉丝: 2303
- 资源: 9142
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功