# Tracking Progress in Natural Language Processing
## Table of contents
### English
- [Automatic speech recognition](english/automatic_speech_recognition.md)
- [CCG](english/ccg.md)
- [Common sense](english/common_sense.md)
- [Constituency parsing](english/constituency_parsing.md)
- [Coreference resolution](english/coreference_resolution.md)
- [Data-to-Text Generation](english/data_to_text_generation.md)
- [Dependency parsing](english/dependency_parsing.md)
- [Dialogue](english/dialogue.md)
- [Domain adaptation](english/domain_adaptation.md)
- [Entity linking](english/entity_linking.md)
- [Grammatical error correction](english/grammatical_error_correction.md)
- [Information extraction](english/information_extraction.md)
- [Intent Detection and Slot Filling](english/intent_detection_slot_filling.md)
- [Language modeling](english/language_modeling.md)
- [Lexical normalization](english/lexical_normalization.md)
- [Machine translation](english/machine_translation.md)
- [Missing elements](english/missing_elements.md)
- [Multi-task learning](english/multi-task_learning.md)
- [Multi-modal](english/multimodal.md)
- [Named entity recognition](english/named_entity_recognition.md)
- [Natural language inference](english/natural_language_inference.md)
- [Part-of-speech tagging](english/part-of-speech_tagging.md)
- [Question answering](english/question_answering.md)
- [Relation prediction](english/relation_prediction.md)
- [Relationship extraction](english/relationship_extraction.md)
- [Semantic textual similarity](english/semantic_textual_similarity.md)
- [Semantic parsing](english/semantic_parsing.md)
- [Semantic role labeling](english/semantic_role_labeling.md)
- [Sentiment analysis](english/sentiment_analysis.md)
- [Shallow syntax](english/shallow_syntax.md)
- [Simplification](english/simplification.md)
- [Stance detection](english/stance_detection.md)
- [Summarization](english/summarization.md)
- [Taxonomy learning](english/taxonomy_learning.md)
- [Temporal processing](english/temporal_processing.md)
- [Text classification](english/text_classification.md)
- [Word sense disambiguation](english/word_sense_disambiguation.md)
### Vietnamese
- [Dependency parsing](vietnamese/vietnamese.md#dependency-parsing)
- [Machine translation](vietnamese/vietnamese.md#machine-translation)
- [Named entity recognition](vietnamese/vietnamese.md#named-entity-recognition)
- [Part-of-speech tagging](vietnamese/vietnamese.md#part-of-speech-tagging)
- [Word segmentation](vietnamese/vietnamese.md#word-segmentation)
### Hindi
- [Chunking](hindi/hindi.md#chunking)
- [Part-of-speech tagging](hindi/hindi.md#part-of-speech-tagging)
- [Machine Translation](hindi/hindi.md#machine-translation)
### Chinese
- [Entity linking](chinese/chinese.md#entity-linking)
- [Chinese word segmentation](chinese/chinese_word_segmentation.md)
- [Question answering](chinese/question_answering.md)
For more tasks, datasets and results in Chinese, check out the [Chinese NLP](https://chinesenlp.xyz/#/) website.
### French
- [Question answering](french/question_answering.md)
### Russian
- [Question answering](russian/question_answering.md)
### Spanish
- [Entity linking](spanish/entity_linking.md#entity-linking)
### Portuguese
- [Question Answering](portuguese/question_answering.md)
### Korean
- [Question Answering](korean/question_answering.md)
### Nepali
- [Machine Translation](nepali/nepali.md#machine-translation)
### Bengali
- [Part-of-speech Tagging](bengali/part_of_speech_tagging.md)
This document aims to track the progress in Natural Language Processing (NLP) and give an overview
of the state-of-the-art (SOTA) across the most common NLP tasks and their corresponding datasets.
It aims to cover both traditional and core NLP tasks such as dependency parsing and part-of-speech tagging
as well as more recent ones such as reading comprehension and natural language inference. The main objective
is to provide the reader with a quick overview of benchmark datasets and the state-of-the-art for their
task of interest, which serves as a stepping stone for further research. To this end, if there is a
place where results for a task are already published and regularly maintained, such as a public leaderboard,
the reader will be pointed there.
If you want to find this document again in the future, just go to [`nlpprogress.com`](https://nlpprogress.com/)
or [`nlpsota.com`](http://nlpsota.com/) in your browser.
### Contributing
#### Guidelines
**Results** Results reported in published papers are preferred; an exception may be made for influential preprints.
**Datasets** Datasets should have been used for evaluation in at least one published paper besides
the one that introduced the dataset.
**Code** We recommend to add a link to an implementation
if available. You can add a `Code` column (see below) to the table if it does not exist.
In the `Code` column, indicate an official implementation with [Official](http://link_to_implementation).
If an unofficial implementation is available, use [Link](http://link_to_implementation) (see below).
If no implementation is available, you can leave the cell empty.
#### Adding a new result
If you would like to add a new result, you can just click on the small edit button in the top-right
corner of the file for the respective task (see below).
![Click on the edit button to add a file](img/edit_file.png)
This allows you to edit the file in Markdown. Simply add a row to the corresponding table in the
same format. Make sure that the table stays sorted (with the best result on top).
After you've made your change, make sure that the table still looks ok by clicking on the
"Preview changes" tab at the top of the page. If everything looks good, go to the bottom of the page,
where you see the below form.
![Fill out the file change information](img/propose_file_change.png)
Add a name for your proposed change, an optional description, indicate that you would like to
"Create a new branch for this commit and start a pull request", and click on "Propose file change".
#### Adding a new dataset or task
For adding a new dataset or task, you can also follow the steps above. Alternatively, you can fork the repository.
In both cases, follow the steps below:
1. If your task is completely new, create a new file and link to it in the table of contents above.
2. If not, add your task or dataset to the respective section of the corresponding file (in alphabetical order).
3. Briefly describe the dataset/task and include relevant references.
4. Describe the evaluation setting and evaluation metric.
5. Show how an annotated example of the dataset/task looks like.
6. Add a download link if available.
7. Copy the below table and fill in at least two results (including the state-of-the-art)
for your dataset/task (change Score to the metric of your dataset). If your dataset/task
has multiple metrics, add them to the right of `Score`.
1. Submit your change as a pull request.
| Model | Score | Paper / Source | Code |
| ------------- | :-----:| --- | --- |
| | | | |
### Wish list
These are tasks and datasets that are still missing:
- Bilingual dictionary induction
- Discourse parsing
- Keyphrase extraction
- Knowledge base population (KBP)
- More dialogue tasks
- Semi-supervised learning
- Frame-semantic parsing (FrameNet full-sentence analysis)
### Exporting into a structured format
You can extract all the data into a structured, machine-readable JSON format with parsed tasks, descriptions and SOTA tables.
The instructions are in [structured/README.md](structured/README.md).
### Instructions for building the site locally
Instructions for building the website locally using Jekyll can be found [here](jekyll_instructions.md).
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
Repository_to_track_the_progress_in_Natural_Langua_NLP-progress.zip (63个子文件)
DataXujing-NLP-progress-305349c
english
domain_adaptation.md 2KB
coreference_resolution.md 3KB
part-of-speech_tagging.md 5KB
shallow_syntax.md 2KB
text_classification.md 6KB
language_modeling.md 25KB
natural_language_inference.md 4KB
dialogue.md 26KB
information_extraction.md 2KB
machine_translation.md 4KB
taxonomy_learning.md 5KB
relation_prediction.md 8KB
semantic_parsing.md 23KB
intent_detection_slot_filling.md 6KB
dependency_parsing.md 15KB
question_answering.md 29KB
grammatical_error_correction.md 14KB
data_to_text_generation.md 9KB
entity_linking.md 13KB
word_sense_disambiguation.md 12KB
common_sense.md 7KB
constituency_parsing.md 7KB
lexical_normalization.md 3KB
ccg.md 5KB
multi-task_learning.md 969B
named_entity_recognition.md 11KB
missing_elements.md 3KB
automatic_speech_recognition.md 217B
temporal_processing.md 8KB
multimodal.md 7KB
semantic_role_labeling.md 1KB
summarization.md 28KB
semantic_textual_similarity.md 5KB
stance_detection.md 1KB
relationship_extraction.md 15KB
sentiment_analysis.md 19KB
simplification.md 23KB
french
question_answering.md 1KB
_config.yml 25B
korean
question_answering.md 541B
LICENSE 1KB
portuguese
question_answering.md 1KB
_includes
chart.html 506B
table.html 792B
hindi
hindi.md 3KB
CNAME 15B
img
propose_file_change.png 146KB
edit_file.png 96KB
spanish
entity_linking.md 591B
vietnamese
vietnamese.md 14KB
Gemfile 72B
jekyll_instructions.md 1KB
chinese
chinese_word_segmentation.md 8KB
question_answering.md 3KB
chinese.md 611B
.gitignore 43B
nepali
nepali.md 393B
structured
export.py 13KB
requirements.txt 0B
README.md 752B
README.md 8KB
russian
question_answering.md 1KB
bengali
part_of_speech_tagging.md 936B
共 63 条
- 1
资源评论
好家伙VCC
- 粉丝: 1955
- 资源: 9137
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功