# Pretrained models for Pytorch (Work in progress)
The goal of this repo is:
- to help to reproduce research papers results (transfer learning setups for instance),
- to access pretrained ConvNets with a unique interface/API inspired by torchvision.
<a href="https://travis-ci.org/Cadene/pretrained-models.pytorch"><img src="https://api.travis-ci.org/Cadene/pretrained-models.pytorch.svg?branch=master"/></a>
News:
- 27/10/2018: Fix compatibility issues, Add tests, Add travis
- 04/06/2018: [PolyNet](https://github.com/CUHK-MMLAB/polynet) and [PNASNet-5-Large](https://arxiv.org/abs/1712.00559) thanks to [Alex Parinov](https://github.com/creafz)
- 16/04/2018: [SE-ResNet* and SE-ResNeXt*](https://github.com/hujie-frank/SENet) thanks to [Alex Parinov](https://github.com/creafz)
- 09/04/2018: [SENet154](https://github.com/hujie-frank/SENet) thanks to [Alex Parinov](https://github.com/creafz)
- 22/03/2018: CaffeResNet101 (good for localization with FasterRCNN)
- 21/03/2018: NASNet Mobile thanks to [Veronika Yurchuk](https://github.com/veronikayurchuk) and [Anastasiia](https://github.com/DagnyT)
- 25/01/2018: DualPathNetworks thanks to [Ross Wightman](https://github.com/rwightman/pytorch-dpn-pretrained), Xception thanks to [T Standley](https://github.com/tstandley/Xception-PyTorch), improved TransformImage API
- 13/01/2018: `pip install pretrainedmodels`, `pretrainedmodels.model_names`, `pretrainedmodels.pretrained_settings`
- 12/01/2018: `python setup.py install`
- 08/12/2017: update data url (/!\ `git pull` is needed)
- 30/11/2017: improve API (`model.features(input)`, `model.logits(features)`, `model.forward(input)`, `model.last_linear`)
- 16/11/2017: nasnet-a-large pretrained model ported by T. Durand and R. Cadene
- 22/07/2017: torchvision pretrained models
- 22/07/2017: momentum in inceptionv4 and inceptionresnetv2 to 0.1
- 17/07/2017: model.input_range attribut
- 17/07/2017: BNInception pretrained on Imagenet
## Summary
- [Installation](https://github.com/Cadene/pretrained-models.pytorch#installation)
- [Quick examples](https://github.com/Cadene/pretrained-models.pytorch#quick-examples)
- [Few use cases](https://github.com/Cadene/pretrained-models.pytorch#few-use-cases)
- [Compute imagenet logits](https://github.com/Cadene/pretrained-models.pytorch#compute-imagenet-logits)
- [Compute imagenet validation metrics](https://github.com/Cadene/pretrained-models.pytorch#compute-imagenet-validation-metrics)
- [Evaluation on ImageNet](https://github.com/Cadene/pretrained-models.pytorch#evaluation-on-imagenet)
- [Accuracy on valset](https://github.com/Cadene/pretrained-models.pytorch#accuracy-on-validation-set)
- [Reproducing results](https://github.com/Cadene/pretrained-models.pytorch#reproducing-results)
- [Documentation](https://github.com/Cadene/pretrained-models.pytorch#documentation)
- [Available models](https://github.com/Cadene/pretrained-models.pytorch#available-models)
- [AlexNet](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [BNInception](https://github.com/Cadene/pretrained-models.pytorch#bninception)
- [CaffeResNet101](https://github.com/Cadene/pretrained-models.pytorch#caffe-resnet)
- [DenseNet121](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [DenseNet161](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [DenseNet169](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [DenseNet201](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [DenseNet201](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [DualPathNet68](https://github.com/Cadene/pretrained-models.pytorch#dualpathnetworks)
- [DualPathNet92](https://github.com/Cadene/pretrained-models.pytorch#dualpathnetworks)
- [DualPathNet98](https://github.com/Cadene/pretrained-models.pytorch#dualpathnetworks)
- [DualPathNet107](https://github.com/Cadene/pretrained-models.pytorch#dualpathnetworks)
- [DualPathNet113](https://github.com/Cadene/pretrained-models.pytorch#dualpathnetworks)
- [FBResNet152](https://github.com/Cadene/pretrained-models.pytorch#facebook-resnet)
- [InceptionResNetV2](https://github.com/Cadene/pretrained-models.pytorch#inception)
- [InceptionV3](https://github.com/Cadene/pretrained-models.pytorch#inception)
- [InceptionV4](https://github.com/Cadene/pretrained-models.pytorch#inception)
- [NASNet-A-Large](https://github.com/Cadene/pretrained-models.pytorch#nasnet)
- [NASNet-A-Mobile](https://github.com/Cadene/pretrained-models.pytorch#nasnet)
- [PNASNet-5-Large](https://github.com/Cadene/pretrained-models.pytorch#pnasnet)
- [PolyNet](https://github.com/Cadene/pretrained-models.pytorch#polynet)
- [ResNeXt101_32x4d](https://github.com/Cadene/pretrained-models.pytorch#resnext)
- [ResNeXt101_64x4d](https://github.com/Cadene/pretrained-models.pytorch#resnext)
- [ResNet101](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [ResNet152](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [ResNet18](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [ResNet34](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [ResNet50](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [SENet154](https://github.com/Cadene/pretrained-models.pytorch#senet)
- [SE-ResNet50](https://github.com/Cadene/pretrained-models.pytorch#senet)
- [SE-ResNet101](https://github.com/Cadene/pretrained-models.pytorch#senet)
- [SE-ResNet152](https://github.com/Cadene/pretrained-models.pytorch#senet)
- [SE-ResNeXt50_32x4d](https://github.com/Cadene/pretrained-models.pytorch#senet)
- [SE-ResNeXt101_32x4d](https://github.com/Cadene/pretrained-models.pytorch#senet)
- [SqueezeNet1_0](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [SqueezeNet1_1](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG11](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG13](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG16](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG19](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG11_BN](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG13_BN](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG16_BN](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [VGG19_BN](https://github.com/Cadene/pretrained-models.pytorch#torchvision)
- [Xception](https://github.com/Cadene/pretrained-models.pytorch#xception)
- [Model API](https://github.com/Cadene/pretrained-models.pytorch#model-api)
- [model.input_size](https://github.com/Cadene/pretrained-models.pytorch#modelinput_size)
- [model.input_space](https://github.com/Cadene/pretrained-models.pytorch#modelinput_space)
- [model.input_range](https://github.com/Cadene/pretrained-models.pytorch#modelinput_range)
- [model.mean](https://github.com/Cadene/pretrained-models.pytorch#modelmean)
- [model.std](https://github.com/Cadene/pretrained-models.pytorch#modelstd)
- [model.features](https://github.com/Cadene/pretrained-models.pytorch#modelfeatures)
- [model.logits](https://github.com/Cadene/pretrained-models.pytorch#modellogits)
- [model.forward](https://github.com/Cadene/pretrained-models.pytorch#modelforward)
- [Reproducing porting](https://github.com/Cadene/pretrained-models.pytorch#reproducing)
- [ResNet*](https://github.com/Cadene/pretrained-models.pytorch#hand-porting-of-resnet152)
- [ResNeXt*](https://github.com/Cadene/pretrained-models.pytorch#automatic-porti
好家伙VCC
- 粉丝: 2310
- 资源: 9142
最新资源
- 基于Springboot+Vue多维分类的知识管理系统-毕业源码案例设计(源码+数据库).zip
- 基于Springboot+Vue房屋租赁管理系统毕业源码案例设计(源码+项目说明+演示视频).zip
- 日本预期寿命数据集.zip
- 基于Springboot+Vue高校教师电子名片系统-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue高校教师科研管理系统-毕业源码案例设计(源码+论文).zip
- 基于Springboot+Vue高校专业实习管理系统的设计和开发-毕业源码案例设计(高分项目).zip
- 基于Springboot+Vue公司日常考勤系统-毕业源码案例设计(源码+项目说明+演示视频).zip
- adb-platform-tools
- 基于stm32的智能门锁系统
- 基于Springboot+Vue个人博客系统的设计与实现-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue个性化定制的智慧校园管理系统设计-毕业源码案例设计(源码+论文).zip
- 使用Maxscript编写圣诞树建模教程及源代码下载
- csdn_v6.5.4.apk
- 基于Springboot+Vue华府便利店信息管理系统-毕业源码案例设计(高分毕业设计).zip
- 基于Springboot+Vue共享汽车管理系统-毕业源码案例设计(高分项目).zip
- 基于Springboot+Vue海滨体育馆管理系统设计毕业源码案例设计(高分毕业设计).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈