<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://githu
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
本系统采用YOLOv5+dlib实现佩戴口罩的人脸识别,在佩戴口罩的情况下也可以进行人脸识别。 关于环境搭建问题: 参考CSDN作者“炮哥带你学”的“利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn”这篇文章。数据集如何划分也可参考炮哥的文章。 环境搭建完成后在anaconda里面新建虚拟环境,将项目的依赖环境改为新建好的conda环境。新建虚拟的环境的目的是因为不同的项目依赖的库不一样,python的版本不一样,全部放在一起会比较乱。 在终端输入pip install -r requirements.txt下载相关依赖,如果某个包下载失败了,删除requirements.txt里面的该包,在anaconda里面单独下载,然后重新执行上面的命令。 本项目使用的版本为python3.6,最好使用相同的版本。
资源推荐
资源详情
资源评论
收起资源包目录
面向佩戴口罩的人脸识别系统 (604个子文件)
005f52943f19d5f12575ba56e9df40f10b8677 56B
00b1ccff81f276d7015b71f659b89d730bfc8c 399B
01577113f636d8bbed14221775a04c5cbddb0f 6KB
02c9ca2f13a1c7c2f455b81cc34a45094c2071 41KB
031b8fe350a2a0f25779e1b8374f7594b74af6 56B
041c4990b3df3750fa498f4c0971dcce471bcb 4KB
04998b125d05cbc9abf9618c6f5083ee49cc9a 15KB
05a867e5644be8cc7549b89cad89d5e84573d0 413B
069fa3f23b5ab5a0c81aafbb4ad7a78783bb9a 88KB
080b8eebe445df584687a003d25917fb01d7ca 3KB
0968c0ede39cbfc68d1432a697465cc45adda1 23KB
0b350afc43d63dfe40deb428429b9602805e83 12KB
0bd68657bd75be7db118737f101e334a4abe7b 12KB
0bef75fed39b7c818f7d290ae88ba01e9248d5 87B
0bfed541e1c3295cf673e06fd637433bca7330 54B
0c28e764c12479f14b3bdddc2ddd1e075f137b 4KB
0c71d32551789d57e5f44fd936636ecb4e3414 697B
0d7c447527f1116e0edb3e1c096904fe3302f1 627B
0e0c65e63da1535d1715f877bfd9114d0422bf 5KB
0e538f4fd7430e03d66b915eb941a3f7f68bae 2KB
0f369da8ca38bb4d46ae3522125d40279c4ff0 121B
0f4d2aeb96baa345971fecc3115ce9e3957f7d 21KB
0f8b62cb610b3809b01a37bca986eaf3f4ec9d 6KB
0fa9093ed937425a74dda995e6795362be1798 23KB
10c8ebbda4c8f2f2c03f064b73f8f51d3a7425 500B
1108fcf4b58c494daa9d1d249cc1e48b021866 12.97MB
132cb7bd07532849e44cf25e74813fd6251914 18KB
1731c979a121ab8227280351b70d6062efd983 679B
173f23bd314b1e54b3bccf3a6047ed1289c9cc 4KB
18085f51f3d62ee98f5e4a1d0a691cf24ac410 177KB
18eb5647a1ae148140d4dd0fe9afd7ec98fdc5 1KB
19a83cfbdf09bea634c3bd9fca737c0b1dd505 436B
1b2afe826e89344486a518827901560581e8e0 6KB
1e4aba0fdddc019e66ef177027b8dbdcb2b283 243B
1e9a132ac6ba912dce03fae48a8ec39e9f7c77 7KB
21f30f93ca37578ce45366a1ddbe3f3eadaa79 227B
22128f769d60fac09e5585c2727e6b7c15a62e 8KB
22a4b804c8a961709a7b39a9d9e6de02dade39 5KB
23f422c19f335c5bbfd3c6b51fee71589f5d87 6KB
24b83b56bc7e55e1d51fde2b318bb19911b44b 3KB
259f17f4f8cc4bc7e4357210708a9d902f0329 1KB
25dd1b9d2ba06b48a1c6c65b705d53ab783693 1KB
261d50d1b64c0d33edbaa292f61432330f48ef 17KB
26acbd92043458311dd949cc09c0195cd35400 852B
289104eb4807112e1a3f19152b80c80ed5f5ea 6KB
28a7f1a85bc5d2034d27fefae5304875fb4630 2KB
2a76068c3f76b0839e8d08056925af40fdd0d9 11KB
2b9f8d4289c26335039908962dbfc2d13c32e1 10KB
2c2cb699e3cf261da462ec7dd20c0ffb7aaad3 693B
2d98bdc36df092299887d8f50e3c1f6f96c683 3KB
2dd54e20ef20af2495411a85e5918ab94a5c58 3KB
2f5845f884b3e089733591825c1c1a70d34041 696B
302fd78e844f7a7dff1008014ba3aeb947c655 11KB
30c8e7b2dfc39f6a4d69ab4a9338c9b5133fca 9KB
31716a9676e2662715312dd5d8cdc927ebbdf2 169KB
31e03c388423181d17d5594a5239565d8a662a 457B
333cc968dcca21b3ad442cd79a581df1bffd40 6KB
33904caea0ddac76e3fa5c3320180c9c75fb47 2KB
3485e2079abe227664474fafe83831ee3be237 1KB
3720a65be5a35acf661c2428883528710ed649 308B
37ed8b2429061df7aa0419aef2e0b43a44c1f8 457B
3853037b01eb53b63a8e3e4440833edb8ff37c 926B
396c5373ca0ff5bf657f9445ea7b95e43b087c 11KB
3ad16a0f58cf48bfc71afdbd1a548bc5ffe8db 623B
3c7f51e4cad2f59019e40f2a3a943cc79d0f81 358B
3e311165c785f000eb7493ff8fb662d06a3f83 473KB
3e5514a06e77e5fb86e86d08549b5f74fa8389 2KB
3e9c6fbf9f7f00c9e7f2a24bc8513a9d5717ea 568B
429c0787f7c374c17d8de9ec460f2de84e93d4 343KB
468a394371020b507440619f54f15719436d5a 5KB
469b8dc1fb95295a45d048ae140db5ca16b595 16KB
4749d17e960ad8131726bfef6d414a772cb58d 11KB
47f0fafb9c0808e281c6c9505abf144d3a2e03 6KB
4815f5cfa03329618c4a1801f16ce68ec666e0 614B
482dd37bea9762963704b0d28477248d6c242f 7KB
4b240e6c36658436f426531485843d4ce0e5a6 632B
4c8e503e0e06199f4d9cd8f522fbf701758371 3KB
4cd5f9cf2bacdd6c3d4b4a1d98bcd26f2b144f 8KB
511a18427ec0b69191ebadefdb55093bf957af 640B
51ca3e18868d9f1f61ad437409d4b08fe6da04 148B
52ae5f57de26d9dd8414a746c76db87153d877 3KB
53da98269e4285836a8a495c7fd36ab67c35dd 1KB
5467cc4502b74e527beeb03a605f939acc5852 15KB
554f4885651a09eeeb933f384805b0283368c1 1KB
55513223204f376cedf636a54fe93af5e4c233 645KB
55618f475104e9858b81470339558156c94e13 450B
569db3f81da6c0775de163254eb08ef0680f9d 14KB
56b7c1186d6ad278957bbd6e976c3a0f169a30 145B
56c7cbbac848c95cfa7544226622a173d006d5 6KB
586cc63faedd91b03ff0c91f99006736034759 839B
5967668abc14c6613d22898e955d485535a07f 79B
5a5d411eae075b0e7f94e9f1be88e4d9612f9a 1KB
5c160bc5e4cd7844ed44315cf574e08b9831db 2KB
5de3db3af2d341dceeeecb013f9530438c1652 78B
5e3d7656299ce20d1774013617a9ae7db05b3a 7KB
5eae6330513e9cba330c8480b1936526514ca7 139B
5f0ca0cc88a0c855c6d8af5d46c99f51ca5aed 6KB
6059bc30bff425fd3a7b2ee83a40a642a8e8c6 561B
617f918a675a49cc15efe2013596d7054dcd72 2KB
6180b564e87d919d67f618bfc5b368c087754b 592B
共 604 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论
「已注销」
- 粉丝: 27
- 资源: 3
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功