# Ultralytics YOLO ð, AGPL-3.0 license
import contextlib
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
RTDETRDecoder, Segment,
Low_FAM, Low_IFM, Split, SimConv, Low_LAF, Inject, RepBlock, High_FAM, High_IFM, High_LAF)
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
from ultralytics.utils.plotting import feature_visualization
from ultralytics.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts,
make_divisible, model_info, scale_img, time_sync)
try:
import thop
except ImportError:
thop = None
class BaseModel(nn.Module):
"""
The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
"""
def forward(self, x, *args, **kwargs):
"""
Forward pass of the model on a single scale.
Wrapper for `_forward_once` method.
Args:
x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.
Returns:
(torch.Tensor): The output of the network.
"""
if isinstance(x, dict): # for cases of training and validating while training.
return self.loss(x, *args, **kwargs)
return self.predict(x, *args, **kwargs)
def predict(self, x, profile=False, visualize=False, augment=False):
"""
Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True, defaults to False.
visualize (bool): Save the feature maps of the model if True, defaults to False.
augment (bool): Augment image during prediction, defaults to False.
Returns:
(torch.Tensor): The last output of the model.
"""
if augment:
return self._predict_augment(x)
return self._predict_once(x, profile, visualize)
def _predict_once(self, x, profile=False, visualize=False):
"""
Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True, defaults to False.
visualize (bool): Save the feature maps of the model if True, defaults to False.
Returns:
(torch.Tensor): The last output of the model.
"""
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
try:
if m.input_nums > 1:
# input nums more than one
x = m(*x) # run
else:
x = m(x)
except AttributeError:
# AttributeError: 'Conv' object has no attribute 'input_nums'
x = m(x)
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
return x
def _predict_augment(self, x):
"""Perform augmentations on input image x and return augmented inference."""
LOGGER.warning(f'WARNING â ï¸ {self.__class__.__name__} does not support augmented inference yet. '
f'Reverting to single-scale inference instead.')
return self._predict_once(x)
def _profile_one_layer(self, m, x, dt):
"""
Profile the computation time and FLOPs of a single layer of the model on a given input.
Appends the results to the provided list.
Args:
m (nn.Module): The layer to be profiled.
x (torch.Tensor): The input data to the layer.
dt (list): A list to store the computation time of the layer.
Returns:
None
"""
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
LOGGER.info(f'{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f} {m.type}')
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
def fuse(self, verbose=True):
"""
Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
computation efficiency.
Returns:
(nn.Module): The fused model is returned.
"""
if not self.is_fused():
for m in self.model.modules():
if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
if isinstance(m, Conv2):
m.fuse_convs()
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm
m.forward = m.forward_fuse # update forward
if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
delattr(m, 'bn') # remove batchnorm
m.forward = m.forward_fuse # update forward
if isinstance(m, RepConv):
m.fuse_convs()
m.forward = m.forward_fuse # update forward
self.info(verbose=verbose)
return self
def is_fused(self, thresh=10):
"""
Check if the model has less than a certain threshold of BatchNorm layers.
Args:
thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.
Returns:
(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
"""
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model
def info(self, detailed=False, verbose=True, imgsz=640):
"""
Prints model information
Args:
detailed (bool): if True, prints out detailed information about the model. Defaults to False
verbose (bool): if True, prints out the model information. Defaults to False
imgsz (int): the size of the image that the model will be trained on. Defaults to 640
"""
return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)
def _apply(self, fn):
"""
Applies a function to all the tensors in the model that are not parameters or registered buffers.
Args:
fn (function): the function to apply to the model
Returns:
A model that is a Detect
YOLOv8改进,融合Gold-YOLO Neck

YOLO(You Only Look Once)系列是目标检测领域中非常著名的一类算法,以其高效和实时性著称。YOLOv8是该系列的最新版本,它在前代基础上进行了多方面的优化和改进,旨在提高目标检测的速度和精度。本文将深入探讨YOLOv8在融合Gold-YOLO Neck方面所做的工作,以及这一改进对整个模型性能的影响。
Gold-YOLO Neck是一种设计用于提升YOLO系列模型信息传递效率和特征融合能力的结构。在目标检测网络中,Neck通常位于Backbone(如ResNet、DarkNet等)和Head之间,其主要任务是通过特征金字塔、信息融合等手段,将不同层次的特征进行有效整合,以提升检测结果的质量。
YOLOv8的改进集中在如何更好地利用Gold-YOLO Neck来提取和融合特征。Gold-YOLO Neck引入了更高级别的特征融合策略,这可能包括FPN(Feature Pyramid Network)、ASFF(Adaptive Spatial Fusion Module)或者其他的跨尺度信息交互模块。这些方法能够将低层特征的细节信息与高层特征的语义信息相结合,从而增强模型对不同大小和形状的目标检测能力。
YOLOv8可能采用了更高效的卷积操作,例如SE-Block(Squeeze-and-Excitation Block)或CBAM(Channel Attention and Spatial Attention Module),这些注意力机制可以动态地调整特征图中的通道和空间权重,进一步提升模型对关键信息的聚焦能力。
此外,Gold-YOLO Neck还可能包含一些优化的残差连接,以缓解深度网络中的梯度消失和爆炸问题,使得信息在层次间的传播更加流畅。这样的设计有助于模型学习更深、更复杂的特征表示,同时保持训练的稳定性。
在实际应用中,YOLOv8融合Gold-YOLO Neck的改进可以带来以下优势:
1. **提升检测精度**:通过更有效的特征融合,YOLOv8能更准确地定位和识别目标,尤其是对于小目标和复杂背景的情况。
2. **加快检测速度**:尽管增加了Neck的复杂性,但通过优化的结构设计,YOLOv8仍能保持较快的运行速度,满足实时检测的需求。
3. **适应性强**:Gold-YOLO Neck的设计使得YOLOv8能够适应多种规模和复杂度的图像数据,提高了模型的泛化能力。
4. **减少计算资源**:尽管提升了性能,但YOLOv8可能通过轻量级模块的设计,在计算资源消耗上保持在合理范围内,这对于资源有限的设备尤其重要。
YOLOv8融合Gold-YOLO Neck的改进不仅增强了模型的检测性能,还体现了目标检测领域的最新研究趋势和创新。通过深入理解和应用这些技术,我们可以进一步优化目标检测系统,满足各种应用场景的需求。在Gold-YOLO_NECK这个压缩包文件中,很可能包含了实现这些改进的相关代码、配置文件和实验结果,供研究者和开发者参考和学习。

羲洋
- 粉丝: 32
最新资源
- 南开大学2021年9月《移动电子商务》作业考核试题及答案参考11.docx
- 浅谈大数据对统计学的挑战和机遇.docx
- 计量自动化系统技术方案(2).doc
- 学生图书借阅管理数据库查询练习及答案.doc
- B2B品牌战略与互联网时代整合营销传播.doc
- 2022年通信工程毕业生求职信8篇.docx
- 第一章计算机系统概述.pptx
- 建筑工程合同信息化管理的发展趋势.docx
- 第章数控铣床和加工中心工艺与编程.ppt
- 南开大学2021年9月《WebService应用系统设计》作业考核试题及答案参考10.docx
- 软件工程实验报告——需求分析.doc
- 互联网+时代高校声乐线上+线下教学模式的建构与运用.docx
- 第2章数据通信基础培训讲学.ppt
- 公司网站推广方案.pptx
- 企业大数据开发方案.docx
- 南开大学2021年9月《WebService应用系统设计》作业考核试题及答案参考12.docx