# encoding:utf-8
'''
BP神经网络Python实现
'''
import random
import numpy as np
def sigmoid(x):
'''
激活函数
'''
return 1.0 / (1.0 + np.exp(-x))
def sigmoid_prime(x):
return sigmoid(x) * (1 - sigmoid(x))
class BPNNRegression:
'''
神经网络回归与分类的差别在于:
1. 输出层不需要再经过激活函数
2. 输出层的 w 和 b 更新量计算相应更改
'''
def __init__(self, sizes):
# 神经网络结构
self.num_layers = len(sizes)
self.sizes = sizes
# 初始化偏差,除输入层外, 其它每层每个节点都生成一个 biase 值(0-1)
self.biases = [np.random.randn(n, 1) for n in sizes[1:]]
# 随机生成每条神经元连接的 weight 值(0-1)
self.weights = [np.random.randn(r, c)
for c, r in zip(sizes[:-1], sizes[1:])]
def feed_forward(self, a):
'''
前向传输计算输出神经元的值
'''
for i, b, w in zip(range(len(self.biases)), self.biases, self.weights):
# 输出神经元不需要经过激励函数
if i == len(self.biases) - 1:
a = np.dot(w, a) + b
break
a = sigmoid(np.dot(w, a) + b)
return a
def MSGD(self, training_data, epochs, mini_batch_size, eta, error=0.01):
'''
小批量随机梯度下降法
'''
n = len(training_data)
for j in range(epochs):
# 随机打乱训练集顺序
random.shuffle(training_data)
# 根据小样本大小划分子训练集集合
mini_batchs = [training_data[k:k + mini_batch_size]
for k in range(0, n, mini_batch_size)]
# 利用每一个小样本训练集更新 w 和 b
for mini_batch in mini_batchs:
self.updata_WB_by_mini_batch(mini_batch, eta)
# 迭代一次后结果
err_epoch = self.evaluate(training_data)
print("Epoch {0} Error {1}".format(j, err_epoch))
if err_epoch < error:
break
# if test_data:
# print("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
# else:
# print("Epoch {0}".format(j))
return err_epoch
def updata_WB_by_mini_batch(self, mini_batch, eta):
'''
利用小样本训练集更新 w 和 b
mini_batch: 小样本训练集
eta: 学习率
'''
# 创建存储迭代小样本得到的 b 和 w 偏导数空矩阵,大小与 biases 和 weights 一致,初始值为 0
batch_par_b = [np.zeros(b.shape) for b in self.biases]
batch_par_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
# 根据小样本中每个样本的输入 x, 输出 y, 计算 w 和 b 的偏导
delta_b, delta_w = self.back_propagation(x, y)
# 累加偏导 delta_b, delta_w
batch_par_b = [bb + dbb for bb, dbb in zip(batch_par_b, delta_b)]
batch_par_w = [bw + dbw for bw, dbw in zip(batch_par_w, delta_w)]
# 根据累加的偏导值 delta_b, delta_w 更新 b, w
# 由于用了小样本,因此 eta 需除以小样本长度
self.weights = [w - (eta / len(mini_batch)) * dw
for w, dw in zip(self.weights, batch_par_w)]
self.biases = [b - (eta / len(mini_batch)) * db
for b, db in zip(self.biases, batch_par_b)]
def back_propagation(self, x, y):
'''
利用误差后向传播算法对每个样本求解其 w 和 b 的更新量
x: 输入神经元,行向量
y: 输出神经元,行向量
'''
delta_b = [np.zeros(b.shape) for b in self.biases]
delta_w = [np.zeros(w.shape) for w in self.weights]
# 前向传播,求得输出神经元的值
a = x # 神经元输出值
# 存储每个神经元输出
activations = [x]
# 存储经过 sigmoid 函数计算的神经元的输入值,输入神经元除外
zs = []
for b, w in zip(self.biases, self.weights):
z = np.dot(w, a) + b
zs.append(z)
a = sigmoid(z) # 输出神经元
activations.append(a)
# -------------
activations[-1] = zs[-1] # 更改神经元输出结果
# -------------
# 求解输出层δ
# 与分类问题不同,Delta计算不需要乘以神经元输入的倒数
# delta = self.cost_function(activations[-1], y) * sigmoid_prime(zs[-1])
delta = self.cost_function(activations[-1], y) # 更改后
# -------------
delta_b[-1] = delta
delta_w[-1] = np.dot(delta, activations[-2].T)
for lev in range(2, self.num_layers):
# 从倒数第1层开始更新,因此需要采用-lev
# 利用 lev + 1 层的 δ 计算 l 层的 δ
z = zs[-lev]
zp = sigmoid_prime(z)
delta = np.dot(self.weights[-lev + 1].T, delta) * zp
delta_b[-lev] = delta
delta_w[-lev] = np.dot(delta, activations[-lev - 1].T)
return (delta_b, delta_w)
def evaluate(self, train_data):
test_result = [[self.feed_forward(x), y]
for x, y in train_data]
return np.sum([0.5 * (x - y) ** 2 for (x, y) in test_result])
def predict(self, test_input):
test_result = [self.feed_forward(x)
for x in test_input]
return test_result
def cost_function(self, output_a, y):
'''
损失函数
'''
return (output_a - y)
pass