[train hyper-parameters: Namespace(batch_size=8, epochs=100, lr=0.0002)]
[epoch: 1]
train loss:0.1871 train accuracy:0.6480
val loss:0.3105 val accuracy:0.9187
[epoch: 2]
train loss:0.0854 train accuracy:0.8695
val loss:0.3296 val accuracy:0.9821
[epoch: 3]
train loss:0.0631 train accuracy:0.9100
val loss:0.3232 val accuracy:0.9901
[epoch: 4]
train loss:0.0613 train accuracy:0.9015
val loss:0.3237 val accuracy:0.9861
[epoch: 5]
train loss:0.0509 train accuracy:0.9125
val loss:0.3337 val accuracy:0.9861
[epoch: 6]
train loss:0.0528 train accuracy:0.9095
val loss:0.3291 val accuracy:0.9841
[epoch: 7]
train loss:0.0439 train accuracy:0.9140
val loss:0.3247 val accuracy:0.9921
[epoch: 8]
train loss:0.0417 train accuracy:0.9270
val loss:0.3440 val accuracy:0.9821
[epoch: 9]
train loss:0.0437 train accuracy:0.9215
val loss:0.3372 val accuracy:0.9762
[epoch: 10]
train loss:0.0376 train accuracy:0.9305
val loss:0.3387 val accuracy:0.9246
[epoch: 11]
train loss:0.0377 train accuracy:0.9295
val loss:0.3409 val accuracy:0.9821
[epoch: 12]
train loss:0.0363 train accuracy:0.9350
val loss:0.3416 val accuracy:0.9861
[epoch: 13]
train loss:0.0387 train accuracy:0.9245
val loss:0.3497 val accuracy:0.9881
[epoch: 14]
train loss:0.0315 train accuracy:0.9400
val loss:0.3512 val accuracy:0.9841
[epoch: 15]
train loss:0.0366 train accuracy:0.9240
val loss:0.3503 val accuracy:0.9881
[epoch: 16]
train loss:0.0384 train accuracy:0.9230
val loss:0.3448 val accuracy:0.9802
[epoch: 17]
train loss:0.0341 train accuracy:0.9340
val loss:0.3511 val accuracy:0.9861
[epoch: 18]
train loss:0.0386 train accuracy:0.9305
val loss:0.3609 val accuracy:0.9921
[epoch: 19]
train loss:0.0373 train accuracy:0.9165
val loss:0.3445 val accuracy:0.9960
[epoch: 20]
train loss:0.0326 train accuracy:0.9395
val loss:0.3543 val accuracy:0.9881
[epoch: 21]
train loss:0.0311 train accuracy:0.9430
val loss:0.3497 val accuracy:0.9960
[epoch: 22]
train loss:0.0316 train accuracy:0.9370
val loss:0.3540 val accuracy:0.9921
[epoch: 23]
train loss:0.0309 train accuracy:0.9420
val loss:0.3459 val accuracy:0.9940
[epoch: 24]
train loss:0.0309 train accuracy:0.9330
val loss:0.3395 val accuracy:0.9940
[epoch: 25]
train loss:0.0310 train accuracy:0.9340
val loss:0.3469 val accuracy:0.9901
[epoch: 26]
train loss:0.0287 train accuracy:0.9430
val loss:0.3542 val accuracy:0.9960
[epoch: 27]
train loss:0.0309 train accuracy:0.9405
val loss:0.3659 val accuracy:0.9881
[epoch: 28]
train loss:0.0304 train accuracy:0.9355
val loss:0.3548 val accuracy:0.9881
[epoch: 29]
train loss:0.0294 train accuracy:0.9400
val loss:0.3378 val accuracy:0.9921
[epoch: 30]
train loss:0.0300 train accuracy:0.9375
val loss:0.3501 val accuracy:0.9960
[epoch: 31]
train loss:0.0296 train accuracy:0.9420
val loss:0.3519 val accuracy:0.9901
[epoch: 32]
train loss:0.0284 train accuracy:0.9395
val loss:0.3498 val accuracy:0.9921
[epoch: 33]
train loss:0.0301 train accuracy:0.9325
val loss:0.3555 val accuracy:0.9881
[epoch: 34]
train loss:0.0284 train accuracy:0.9470
val loss:0.3515 val accuracy:0.9921
[epoch: 35]
train loss:0.0253 train accuracy:0.9500
val loss:0.3611 val accuracy:0.9901
[epoch: 36]
train loss:0.0288 train accuracy:0.9430
val loss:0.3512 val accuracy:0.9940
[epoch: 37]
train loss:0.0272 train accuracy:0.9435
val loss:0.3451 val accuracy:0.9940
[epoch: 38]
train loss:0.0258 train accuracy:0.9470
val loss:0.3585 val accuracy:0.9921
[epoch: 39]
train loss:0.0290 train accuracy:0.9395
val loss:0.3756 val accuracy:0.9742
[epoch: 40]
train loss:0.0259 train accuracy:0.9385
val loss:0.3675 val accuracy:0.9960
[epoch: 41]
train loss:0.0258 train accuracy:0.9420
val loss:0.3635 val accuracy:0.9603
[epoch: 42]
train loss:0.0270 train accuracy:0.9490
val loss:0.3855 val accuracy:0.9940
[epoch: 43]
train loss:0.0278 train accuracy:0.9385
val loss:0.3517 val accuracy:0.9940
[epoch: 44]
train loss:0.0271 train accuracy:0.9425
val loss:0.3578 val accuracy:0.9901
[epoch: 45]
train loss:0.0236 train accuracy:0.9505
val loss:0.3661 val accuracy:0.9921
[epoch: 46]
train loss:0.0273 train accuracy:0.9435
val loss:0.3602 val accuracy:0.9940
[epoch: 47]
train loss:0.0226 train accuracy:0.9550
val loss:0.3650 val accuracy:0.9940
[epoch: 48]
train loss:0.0256 train accuracy:0.9420
val loss:0.3648 val accuracy:0.9901
[epoch: 49]
train loss:0.0235 train accuracy:0.9510
val loss:0.3565 val accuracy:0.9881
[epoch: 50]
train loss:0.0264 train accuracy:0.9435
val loss:0.3701 val accuracy:0.9940
[epoch: 51]
train loss:0.0269 train accuracy:0.9445
val loss:0.3770 val accuracy:0.9960
[epoch: 52]
train loss:0.0238 train accuracy:0.9490
val loss:0.3865 val accuracy:0.9881
[epoch: 53]
train loss:0.0260 train accuracy:0.9445
val loss:0.3698 val accuracy:0.9921
[epoch: 54]
train loss:0.0227 train accuracy:0.9560
val loss:0.3687 val accuracy:0.9861
[epoch: 55]
train loss:0.0226 train accuracy:0.9515
val loss:0.3743 val accuracy:0.9881
[epoch: 56]
train loss:0.0262 train accuracy:0.9410
val loss:0.3617 val accuracy:0.9940
[epoch: 57]
train loss:0.0250 train accuracy:0.9465
val loss:0.3686 val accuracy:0.9960
[epoch: 58]
train loss:0.0262 train accuracy:0.9455
val loss:0.3578 val accuracy:0.9960
[epoch: 59]
train loss:0.0258 train accuracy:0.9480
val loss:0.3811 val accuracy:0.9921
[epoch: 60]
train loss:0.0224 train accuracy:0.9550
val loss:0.3568 val accuracy:0.9921
[epoch: 61]
train loss:0.0206 train accuracy:0.9575
val loss:0.3577 val accuracy:0.9901
[epoch: 62]
train loss:0.0229 train accuracy:0.9545
val loss:0.3628 val accuracy:0.9901
[epoch: 63]
train loss:0.0193 train accuracy:0.9585
val loss:0.3779 val accuracy:0.9921
[epoch: 64]
train loss:0.0247 train accuracy:0.9460
val loss:0.3792 val accuracy:0.9921
[epoch: 65]
train loss:0.0243 train accuracy:0.9515
val loss:0.3829 val accuracy:0.9841
[epoch: 66]
train loss:0.0241 train accuracy:0.9500
val loss:0.3849 val accuracy:0.9940
[epoch: 67]
train loss:0.0235 train accuracy:0.9515
val loss:0.3871 val accuracy:0.9921
[epoch: 68]
train loss:0.0254 train accuracy:0.9435
val loss:0.3846 val accuracy:0.9802
[epoch: 69]
train loss:0.0227 train accuracy:0.9455
val loss:0.3853 val accuracy:0.9782
[epoch: 70]
train loss:0.0216 train accuracy:0.9525
val loss:0.3904 val accuracy:0.9782
[epoch: 71]
train loss:0.0250 train accuracy:0.9480
val loss:0.3776 val accuracy:0.9901
[epoch: 72]
train loss:0.0233 train accuracy:0.9575
val loss:0.3575 val accuracy:0.9841
[epoch: 73]
train loss:0.0218 train accuracy:0.9520
val loss:0.3820 val accuracy:0.9802
[epoch: 74]
train loss:0.0233 train accuracy:0.9545
val loss:0.3783 val accuracy:0.9881
[epoch: 75]
train loss:0.0216 train accuracy:0.9565
val loss:0.3868 val accuracy:0.9861
[epoch: 76]
train loss:0.0230 train accuracy:0.9520
val loss:0.3793 val accuracy:0.9901
[epoch: 77]
train loss:0.0222 train accuracy:0.9520
val loss:0.3759 val accuracy:0.9940
[epoch: 78]
train loss:0.0219 train accuracy:0.9590
val loss:0.3695 val accuracy:0.9921
[epoch: 79]
train loss:0.0223 train accuracy:0.9490
val loss:0.3705 val accuracy:0.9940
[epoch: 80]
train loss:0.0248 train accuracy:0.9445
val loss:0.3702 val accuracy:0.9960
[epoch: 81]
train loss:0.0224 train accuracy:0.9515
val loss:0.3600 val accuracy:0.9940
[epoch: 82]
train loss:0.0260 train accuracy:0.9470
val loss:0.3862 val accuracy:0.9821
[epoch: 83]
train loss:0.0186 train accuracy:0.9520
val loss:0.3664 val accuracy:0.9960
[epoch: 84]
train loss:0.0227 train accuracy:0.9485
val loss:0.3728 val accuracy:0.9901
[epoch: 85]
train loss:0.0218 train accuracy:0.9555
val loss:0.3871 val accuracy:0.9841
[epoch: 86]
train loss:0.0212 train accuracy:0.9535
val loss:0.3691 val accuracy:0.9921
[epoch: 87]
train loss:0.0224 train accuracy:0.9495
val loss:0.3932 val accuracy:0.9921
[epoch: 88]
train loss:0.0216 train accuracy:0.9510
val loss:0.4047 val accuracy:0.9901
[epoch: 89]
trai
听风吹等浪起
- 粉丝: 2w+
- 资源: 2411
最新资源
- 风力发电MPPT并网模型的策略模块封装及步长选择策略:变步长与固定步长两种策略对比,风力发电mppt并网模型,策略模块已mask封装,可以选定步长和变步长2种策略 ,核心关键词:风力发电; MPP
- 基于51单片机的Proteus仿真:人数检测显示与报警系统实战应用,基于51单片机的人数检测显示及报警检测Proteus仿真 ,基于51单片机;人数检测显示;报警检测;Proteus仿真,"基于51单
- 基于STM32F系列开发的高效稳定企业级变频器方案-原理图与硬件设计说明大全,基于STM32开发变频器-企业级成熟量产方案 包含:变频控制板-原理图、PCB 变频逆变器功率板-原理图 PCB 控制板
- 基于事件触发模型的倒立摆控制仿真实验-Simulink模型与详细参考文献,【有参考文献】事件触发模型 可实现倒立摆控制仿真实验 simulink模型可直接运行 含详细参考文献 ,关键词:事件触发模
- 智能小车路径规划算法:融合RRT与Dubins及A*方法的创新路径规划策略,智能小车路径规划 算法:RRT与Dubins相结合的方法,混合A*与Dubins相结合的方法 实现智能小车最短路径规划
- 基于FOC、SMO与PLL融合技术的Simlink仿真模型研究,FOC+SMO+PLL的Simlink仿真模型 ,关键词:FOC(Field Oriented Control);SMO(Smooth
- 三相异步电机矢量控制仿真模型的构建与性能分析,三相异步电机矢量控制仿真模型 ,核心关键词:三相异步电机;矢量控制;仿真模型;分号分隔的关键词为:三相异步电机;矢量控制技术;仿真模型构建 ,三相异步电
- 模拟IC设计学习与实战:探索知名大厂DCDC电路,高转换效率标准单元库器件与Cadence环境下的原理图实战应用,模拟IC模拟IC设计,集成电路,知名大厂的逆向DCDC电路(buck-boost功能)
- Boost电路电压闭环仿真研究:包含PI控制与零极点补偿器的模型及其性能分析,boost电路电压闭环仿真 有pi控制和零极点补偿器两种 仿真误差0.00705,仿真波形如图二所示 所搭建的模型输入电压
- TCR+FC型SVC无功补偿双封装Simulink仿真模型详解与实例资料集锦,TCR+FC型svc无功补偿simulink仿真模型,一共两个仿真,如下图所示,两个其实大致内容差不多,只是封装不同,有详
- COMSOL模拟动水条件下裂隙注浆扩散过程:粘度时变影响研究,COMSOL模拟动水条件联系裂隙注浆扩散,考虑粘度时变 ,核心关键词:COMSOL模拟; 动水条件; 裂隙注浆扩散; 粘度时变; 注浆扩散
- 分布式电源接入对配电网的潮流影响分析:Matlab程序模拟的探索与探索 ,分布式电源接入对配电网的影响(matlab程序) 分布式电源的接入使得配电系统从放射状无源网络变为分布有中小型电源的有源网络
- XC7V2000T与TMS320C6678设计文件集:原理图、PCB等齐全,验证通过,直接生产使用,XC7V2000T+TMS320C6678设计文件,包含原理图,PCB等文件,已验证,可直接生产
- 基于STM32G431主控的最新磁链观测器优化方案:无感foc浮点运算,弦波pmsm无刷电机控制源代码集,卓越效果无库文件原理图解,磁链观测器,无感foc ,弦波 pmsm 无刷电机控制方案 最新优
- 基于Matlab的无线充电仿真:LCC谐振器与不同拓扑的磁耦合谐振无线电能传输系统解析与建模,无线充电仿真 simulink 磁耦合谐振 无线电能传输 MCR WPT lcc ss llc拓扑补偿
- 直流无刷电机:高效磨头加工利器,直径38mm,转速高达25000rpm,功率达200W,直流无刷电机,直径38mm,径向长23.8mm,转速25000rpm,功率200W,可用于磨头加工 ,核心关键
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈