[train hyper-parameters: Namespace(base_size=500, batch_size=8, crop_size=480, epochs=50, lr=0.01, lrf=0.001)]
[epoch: 1]
global correct: 0.9507
precision: ['0.9582', '0.8713', '0.0000']
recall: ['0.9918', '0.6785', '0.0000']
IoU: ['0.9507', '0.6167', '0.0000']
mean IoU: 0.5224
[epoch: 2]
global correct: 0.9679
precision: ['0.9744', '0.9091', '0.8995']
recall: ['0.9936', '0.8183', '0.0152']
IoU: ['0.9683', '0.7564', '0.0152']
mean IoU: 0.5800
[epoch: 3]
global correct: 0.9270
precision: ['0.9290', '0.9148', '0.3359']
recall: ['0.9957', '0.4257', '0.1168']
IoU: ['0.9253', '0.4095', '0.0949']
mean IoU: 0.4765
[epoch: 4]
global correct: 0.9799
precision: ['0.9939', '0.8838', '0.7696']
recall: ['0.9868', '0.9518', '0.5050']
IoU: ['0.9809', '0.8459', '0.4387']
mean IoU: 0.7552
[epoch: 5]
global correct: 0.9822
precision: ['0.9919', '0.9093', '0.8941']
recall: ['0.9915', '0.9392', '0.4398']
IoU: ['0.9836', '0.8587', '0.4180']
mean IoU: 0.7534
[epoch: 6]
global correct: 0.9808
precision: ['0.9968', '0.8756', '0.7697']
recall: ['0.9848', '0.9722', '0.5852']
IoU: ['0.9817', '0.8542', '0.4980']
mean IoU: 0.7780
[epoch: 7]
global correct: 0.9865
precision: ['0.9934', '0.9372', '0.8584']
recall: ['0.9944', '0.9476', '0.5807']
IoU: ['0.9878', '0.8910', '0.5299']
mean IoU: 0.8029
[epoch: 8]
global correct: 0.9839
precision: ['0.9958', '0.9218', '0.5989']
recall: ['0.9890', '0.9542', '0.7965']
IoU: ['0.9850', '0.8827', '0.5194']
mean IoU: 0.7957
[epoch: 9]
global correct: 0.9872
precision: ['0.9947', '0.9336', '0.8731']
recall: ['0.9936', '0.9566', '0.6351']
IoU: ['0.9883', '0.8957', '0.5814']
mean IoU: 0.8218
[epoch: 10]
global correct: 0.9865
precision: ['0.9918', '0.9503', '0.8240']
recall: ['0.9956', '0.9331', '0.6493']
IoU: ['0.9875', '0.8897', '0.5702']
mean IoU: 0.8158
[epoch: 11]
global correct: 0.9870
precision: ['0.9959', '0.9237', '0.8804']
recall: ['0.9920', '0.9660', '0.6659']
IoU: ['0.9879', '0.8946', '0.6107']
mean IoU: 0.8311
[epoch: 12]
global correct: 0.9870
precision: ['0.9912', '0.9576', '0.8705']
recall: ['0.9966', '0.9281', '0.6845']
IoU: ['0.9878', '0.8914', '0.6213']
mean IoU: 0.8335
[epoch: 13]
global correct: 0.9868
precision: ['0.9929', '0.9533', '0.7224']
recall: ['0.9950', '0.9364', '0.7304']
IoU: ['0.9880', '0.8953', '0.5704']
mean IoU: 0.8179
[epoch: 14]
global correct: 0.9882
precision: ['0.9958', '0.9363', '0.8568']
recall: ['0.9932', '0.9636', '0.7386']
IoU: ['0.9890', '0.9042', '0.6574']
mean IoU: 0.8502
[epoch: 15]
global correct: 0.9900
precision: ['0.9949', '0.9578', '0.8632']
recall: ['0.9958', '0.9566', '0.7718']
IoU: ['0.9907', '0.9179', '0.6877']
mean IoU: 0.8654
[epoch: 16]
global correct: 0.9883
precision: ['0.9934', '0.9515', '0.9021']
recall: ['0.9956', '0.9490', '0.6649']
IoU: ['0.9890', '0.9052', '0.6202']
mean IoU: 0.8381
[epoch: 17]
global correct: 0.9872
precision: ['0.9968', '0.9233', '0.8308']
recall: ['0.9909', '0.9695', '0.7930']
IoU: ['0.9877', '0.8972', '0.6827']
mean IoU: 0.8559
[epoch: 18]
global correct: 0.9892
precision: ['0.9956', '0.9533', '0.7558']
recall: ['0.9950', '0.9542', '0.8092']
IoU: ['0.9906', '0.9115', '0.6415']
mean IoU: 0.8479
[epoch: 19]
global correct: 0.9900
precision: ['0.9953', '0.9607', '0.7851']
recall: ['0.9955', '0.9541', '0.8466']
IoU: ['0.9908', '0.9182', '0.6873']
mean IoU: 0.8655
[epoch: 20]
global correct: 0.9908
precision: ['0.9958', '0.9579', '0.8697']
recall: ['0.9959', '0.9627', '0.7820']
IoU: ['0.9917', '0.9236', '0.6999']
mean IoU: 0.8718
[epoch: 21]
global correct: 0.9909
precision: ['0.9958', '0.9620', '0.8168']
recall: ['0.9960', '0.9587', '0.8421']
IoU: ['0.9919', '0.9237', '0.7083']
mean IoU: 0.8746
[epoch: 22]
global correct: 0.9901
precision: ['0.9958', '0.9555', '0.8057']
recall: ['0.9952', '0.9582', '0.8370']
IoU: ['0.9910', '0.9172', '0.6965']
mean IoU: 0.8682
[epoch: 23]
global correct: 0.9892
precision: ['0.9941', '0.9596', '0.8125']
recall: ['0.9960', '0.9484', '0.7602']
IoU: ['0.9901', '0.9120', '0.6467']
mean IoU: 0.8496
[epoch: 24]
global correct: 0.9914
precision: ['0.9954', '0.9646', '0.8794']
recall: ['0.9966', '0.9601', '0.8163']
IoU: ['0.9920', '0.9274', '0.7341']
mean IoU: 0.8845
[epoch: 25]
global correct: 0.9915
precision: ['0.9966', '0.9581', '0.8648']
recall: ['0.9956', '0.9679', '0.8248']
IoU: ['0.9922', '0.9285', '0.7306']
mean IoU: 0.8838
[epoch: 26]
global correct: 0.9911
precision: ['0.9954', '0.9677', '0.8118']
recall: ['0.9968', '0.9549', '0.8419']
IoU: ['0.9922', '0.9254', '0.7044']
mean IoU: 0.8740
[epoch: 27]
global correct: 0.9909
precision: ['0.9949', '0.9668', '0.8507']
recall: ['0.9968', '0.9547', '0.8156']
IoU: ['0.9917', '0.9244', '0.7135']
mean IoU: 0.8765
[epoch: 28]
global correct: 0.9915
precision: ['0.9961', '0.9622', '0.8627']
recall: ['0.9962', '0.9638', '0.8256']
IoU: ['0.9923', '0.9287', '0.7298']
mean IoU: 0.8836
[epoch: 29]
global correct: 0.9918
precision: ['0.9965', '0.9638', '0.8329']
recall: ['0.9961', '0.9640', '0.8737']
IoU: ['0.9926', '0.9303', '0.7434']
mean IoU: 0.8888
[epoch: 30]
global correct: 0.9922
precision: ['0.9967', '0.9640', '0.8614']
recall: ['0.9963', '0.9678', '0.8536']
IoU: ['0.9930', '0.9341', '0.7505']
mean IoU: 0.8925
[epoch: 31]
global correct: 0.9918
precision: ['0.9957', '0.9682', '0.8608']
recall: ['0.9968', '0.9600', '0.8495']
IoU: ['0.9925', '0.9307', '0.7469']
mean IoU: 0.8900
[epoch: 32]
global correct: 0.9925
precision: ['0.9964', '0.9676', '0.8808']
recall: ['0.9968', '0.9671', '0.8422']
IoU: ['0.9932', '0.9367', '0.7561']
mean IoU: 0.8953
[epoch: 33]
global correct: 0.9921
precision: ['0.9967', '0.9640', '0.8487']
recall: ['0.9961', '0.9671', '0.8728']
IoU: ['0.9928', '0.9334', '0.7553']
mean IoU: 0.8938
[epoch: 34]
global correct: 0.9924
precision: ['0.9966', '0.9689', '0.8306']
recall: ['0.9967', '0.9646', '0.8842']
IoU: ['0.9933', '0.9356', '0.7491']
mean IoU: 0.8927
[epoch: 35]
global correct: 0.9924
precision: ['0.9966', '0.9677', '0.8564']
recall: ['0.9966', '0.9662', '0.8712']
IoU: ['0.9932', '0.9360', '0.7601']
mean IoU: 0.8964
[epoch: 36]
global correct: 0.9925
precision: ['0.9969', '0.9636', '0.8933']
recall: ['0.9964', '0.9710', '0.8362']
IoU: ['0.9933', '0.9366', '0.7603']
mean IoU: 0.8967
[epoch: 37]
global correct: 0.9923
precision: ['0.9967', '0.9662', '0.8411']
recall: ['0.9963', '0.9659', '0.8858']
IoU: ['0.9930', '0.9343', '0.7588']
mean IoU: 0.8954
[epoch: 38]
global correct: 0.9925
precision: ['0.9965', '0.9680', '0.8575']
recall: ['0.9967', '0.9659', '0.8707']
IoU: ['0.9932', '0.9359', '0.7606']
mean IoU: 0.8966
[epoch: 39]
global correct: 0.9926
precision: ['0.9964', '0.9690', '0.8756']
recall: ['0.9969', '0.9659', '0.8597']
IoU: ['0.9933', '0.9370', '0.7661']
mean IoU: 0.8988
[epoch: 40]
global correct: 0.9927
precision: ['0.9962', '0.9697', '0.8911']
recall: ['0.9971', '0.9657', '0.8434']
IoU: ['0.9934', '0.9374', '0.7646']
mean IoU: 0.8985
[epoch: 41]
global correct: 0.9928
precision: ['0.9967', '0.9684', '0.8846']
recall: ['0.9969', '0.9687', '0.8555']
IoU: ['0.9936', '0.9391', '0.7697']
mean IoU: 0.9008
[epoch: 42]
global correct: 0.9927
precision: ['0.9966', '0.9677', '0.8726']
recall: ['0.9967', '0.9678', '0.8618']
IoU: ['0.9934', '0.9375', '0.7655']
mean IoU: 0.8988
[epoch: 43]
global correct: 0.9928
precision: ['0.9965', '0.9690', '0.8867']
recall: ['0.9970', '0.9675', '0.8544']
IoU: ['0.9935', '0.9384', '0.7703']
mean IoU: 0.9007
[epoch: 44]
global correct: 0.9929
precision: ['0.9969', '0.9659', '0.8952']
recall: ['0.9966', '0.9716', '0.8468']
IoU: ['0.9936', '0.9394', '0.7704']
mean IoU: 0.9011
[epoch: 45]
global correct: 0.9928
precision: ['0.9966', '0.9688', '0.8891']
recall: ['0.9970', '0.9682', '0.8522']
IoU: ['0.9935', '0.9389', '0.7703']
mean IoU: 0.9009
[epoch: 46]
global correct: 0.9928
precision: ['0.9966', '0.9693', '0.8773']
recall: ['0.9969', '0.9673', '0.8658']
IoU: ['0.9935', '0.9386', '0.7723']
mean IoU: 0.9014
[epoch: 47]
global correct: 0.9929
precision: ['0.9968', '0.9677', '0.8852']
re
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于Unet 对人胰腺癌症分割的分割【包含数据集、完整代码、训练的结果文件】 本项目数据集:胰腺癌症分割【mask中1为胰腺、2为癌症 、0为背景】 网络仅仅训练了50个epochs,全局像素点的准确度达到0.99,miou为0.90,训练epoch加大的话,性能还会更加优越 代码介绍: 【训练】train 脚本会自动训练,代码会自动将数据随机缩放为设定尺寸的0.5-1.5倍之间,实现多尺度训练。为了实现多分割项目,utils中的compute_gray函数会将mask灰度值保存在txt文本,并且自动为unet网络定义输出的channel 【介绍】学习率采用cos衰减,训练集和测试集的损失和iou曲线可以在run_results文件内查看,图像由matplotlib库绘制。除此外,还保存了训练日志,最好权重等,在训练日志可以看到每个类别的iou、recall、precision以及全局像素点的准确率等等 【推理】把待推理图像放在inference目录下,直接运行predict脚本即可,无需设定参数 具体参考README文件,小白均可使用,如果训练自己数据的话,直接摆好数据即可!
资源推荐
资源详情
资源评论
收起资源包目录
基于Unet 对胰腺癌症数据的分割【包含数据集、完整代码、训练的结果文件】 (2000个子文件)
liver_0_58.png 81KB
liver_0_56.png 81KB
liver_108_535.png 4KB
liver_108_524.png 4KB
liver_108_521.png 4KB
liver_108_530.png 4KB
liver_108_531.png 4KB
liver_108_511.png 4KB
liver_108_552.png 4KB
liver_108_540.png 4KB
liver_108_553.png 4KB
liver_108_503.png 4KB
liver_108_555.png 4KB
liver_0_58_result.png 4KB
liver_117_456.png 4KB
liver_97_577.png 3KB
liver_108_497.png 3KB
liver_108_482.png 3KB
liver_0_56_result.png 3KB
liver_117_462.png 3KB
liver_97_558.png 3KB
liver_108_481.png 3KB
liver_97_578.png 3KB
liver_117_460.png 3KB
liver_117_464.png 3KB
liver_97_576.png 3KB
liver_108_480.png 3KB
liver_117_465.png 3KB
liver_97_557.png 3KB
liver_33_100.png 3KB
liver_4_473.png 3KB
liver_129_137.png 3KB
liver_97_573.png 3KB
liver_108_484.png 3KB
liver_108_493.png 3KB
liver_108_494.png 3KB
liver_97_581.png 3KB
liver_129_190.png 3KB
liver_97_565.png 3KB
liver_129_183.png 3KB
liver_33_109.png 3KB
liver_129_177.png 3KB
liver_129_143.png 3KB
liver_129_189.png 3KB
liver_33_97.png 3KB
liver_129_154.png 3KB
liver_129_170.png 3KB
liver_97_550.png 3KB
liver_129_153.png 3KB
liver_129_158.png 3KB
liver_129_157.png 3KB
liver_129_133.png 3KB
liver_117_473.png 3KB
liver_129_146.png 3KB
liver_129_148.png 3KB
liver_4_460.png 3KB
liver_108_472.png 3KB
liver_84_545.png 3KB
liver_4_481.png 3KB
liver_97_548.png 3KB
liver_108_575.png 3KB
liver_117_435.png 3KB
liver_84_550.png 3KB
liver_108_571.png 3KB
liver_33_111.png 3KB
liver_97_536.png 3KB
liver_117_431.png 3KB
liver_97_539.png 3KB
liver_117_428.png 3KB
liver_117_480.png 3KB
liver_33_94.png 3KB
liver_97_591.png 3KB
liver_108_465.png 3KB
liver_97_534.png 3KB
liver_129_199.png 3KB
liver_129_238.png 3KB
liver_129_201.png 3KB
liver_97_599.png 3KB
liver_84_558.png 3KB
liver_129_229.png 3KB
liver_97_590.png 3KB
liver_129_202.png 3KB
liver_100_519.png 3KB
liver_129_198.png 3KB
liver_129_228.png 3KB
liver_108_578.png 3KB
liver_117_425.png 3KB
liver_117_426.png 3KB
liver_84_560.png 3KB
liver_129_214.png 3KB
liver_97_533.png 3KB
liver_129_222.png 3KB
liver_129_227.png 3KB
liver_100_524.png 3KB
liver_101_493.png 3KB
liver_129_215.png 3KB
liver_128_536.png 3KB
liver_100_513.png 3KB
liver_84_568.png 3KB
liver_117_485.png 3KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- yzsnddi2024-06-13资源内容详实,描述详尽,解决了我的问题,受益匪浅,学到了。
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2122
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- C#ASP.NET企业在线记账平台源码数据库 SQL2012源码类型 WebForm
- PHP客户关系CRM管理系统源码数据库 MySQL源码类型 WebForm
- python-勇者斗恶龙 回合制游戏 有图有真相 英雄和怪兽行为和状态的设定
- JAVA的Springboot垃圾分类识别小程序源码带部署文档数据库 MySQL源码类型 WebForm
- 图像分类数据集:番茄叶片病害图像识别数据集(包括划分好的数据【文件夹保存】、类别字典文件)
- web版本实现迅飞语音听写(流式版)封装代码
- JAVAspringboot校园转转二手电商市场源码数据库 MySQL源码类型 WebForm
- MICO_Android_Release_2_4_54.apk
- 个人日常总结,待整理 杂乱的笔记
- liteidex38.3-win64
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功