[train hyper-parameters: Namespace(batch_size=16, epochs=50)]
[epoch: 1]
train loss:0.1111 test accuracy:0.4545
[epoch: 2]
train loss:0.0910 test accuracy:0.5545
[epoch: 3]
train loss:0.0834 test accuracy:0.5673
[epoch: 4]
train loss:0.0761 test accuracy:0.6491
[epoch: 5]
train loss:0.0700 test accuracy:0.6291
[epoch: 6]
train loss:0.0666 test accuracy:0.6855
[epoch: 7]
train loss:0.0662 test accuracy:0.6382
[epoch: 8]
train loss:0.0618 test accuracy:0.7000
[epoch: 9]
train loss:0.0586 test accuracy:0.7109
[epoch: 10]
train loss:0.0569 test accuracy:0.6691
[epoch: 11]
train loss:0.0524 test accuracy:0.7036
[epoch: 12]
train loss:0.0522 test accuracy:0.7400
[epoch: 13]
train loss:0.0488 test accuracy:0.7309
[epoch: 14]
train loss:0.0468 test accuracy:0.7182
[epoch: 15]
train loss:0.0460 test accuracy:0.7327
[epoch: 16]
train loss:0.0434 test accuracy:0.7273
[epoch: 17]
train loss:0.0410 test accuracy:0.7309
[epoch: 18]
train loss:0.0392 test accuracy:0.7164
[epoch: 19]
train loss:0.0401 test accuracy:0.7327
[epoch: 20]
train loss:0.0390 test accuracy:0.7527
[epoch: 21]
train loss:0.0337 test accuracy:0.7418
[epoch: 22]
train loss:0.0336 test accuracy:0.7582
[epoch: 23]
train loss:0.0309 test accuracy:0.7545
[epoch: 24]
train loss:0.0313 test accuracy:0.7491
[epoch: 25]
train loss:0.0295 test accuracy:0.7273
[epoch: 26]
train loss:0.0269 test accuracy:0.7455
[epoch: 27]
train loss:0.0279 test accuracy:0.7364
[epoch: 28]
train loss:0.0240 test accuracy:0.7418
[epoch: 29]
train loss:0.0247 test accuracy:0.7200
[epoch: 30]
train loss:0.0236 test accuracy:0.7400
[epoch: 31]
train loss:0.0201 test accuracy:0.7509
[epoch: 32]
train loss:0.0195 test accuracy:0.7364
[epoch: 33]
train loss:0.0197 test accuracy:0.7455
[epoch: 34]
train loss:0.0186 test accuracy:0.7727
[epoch: 35]
train loss:0.0184 test accuracy:0.7745
[epoch: 36]
train loss:0.0194 test accuracy:0.7545
[epoch: 37]
train loss:0.0182 test accuracy:0.7473
[epoch: 38]
train loss:0.0147 test accuracy:0.7509
[epoch: 39]
train loss:0.0138 test accuracy:0.7545
[epoch: 40]
train loss:0.0154 test accuracy:0.7545
[epoch: 41]
train loss:0.0140 test accuracy:0.7836
[epoch: 42]
train loss:0.0145 test accuracy:0.7418
[epoch: 43]
train loss:0.0156 test accuracy:0.7200
[epoch: 44]
train loss:0.0134 test accuracy:0.7764
[epoch: 45]
train loss:0.0111 test accuracy:0.7600
[epoch: 46]
train loss:0.0111 test accuracy:0.7418
[epoch: 47]
train loss:0.0128 test accuracy:0.7727
[epoch: 48]
train loss:0.0109 test accuracy:0.7509
[epoch: 49]
train loss:0.0108 test accuracy:0.7600
[epoch: 50]
train loss:0.0101 test accuracy:0.7473
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于轻量级EfficientNet网络对8种水果数据集的项目,包含代码、数据集和训练好的权重文件,可直接运行。 项目总大小:180MB 本数据集分为以下8类:苹果、香蕉、樱桃、火龙果、芒果、橘子、菠萝、木瓜(每个类别均有200-300张图片) 下载解压后的图像目录:训练集(2220张图片)、和测试集(550张图片) data-train 训练集-每个子文件夹放同类别的图像,文件夹名为分类类别 data-test 测试集-每个子文件夹放同类别的图像,文件夹名为分类类别 网络训练的时候采用cos 学习率自动衰减,训练了50个epoch。模型在测试集最好的表现达到78%精度,增大epoch可以增加性能。在run_results 目录下存有最好的权重文件,以及训练日志和loss、精度曲线等等 预测的时候,只需要运行predict即可,代码会自动将inference下所有图片推理,并取前三个概率最大类别的绘制在左上角 如果想要训练自己的数据集,请查看README文件,不需要设定额外参数,代码会自动根据数据生成,例如num classes等等
资源推荐
资源详情
资源评论
收起资源包目录
经典轻量级CNN网络之EfficientNet图像分类网络实战项目:8种水果图像分类项目 (2000个子文件)
Baidu_0424.jpeg 764KB
Baidu_0288.jpeg 739KB
Baidu_0290.jpeg 681KB
Baidu_0047.jpeg 675KB
Baidu_0327.jpeg 670KB
Baidu_0368.jpeg 656KB
Baidu_0034.jpeg 575KB
Baidu_0511.jpeg 564KB
Baidu_0347.jpeg 497KB
Baidu_0388.jpeg 492KB
Baidu_0518.jpeg 488KB
Baidu_0052.jpeg 467KB
Baidu_0038.jpeg 466KB
Baidu_0502.jpeg 420KB
Baidu_0422.jpeg 415KB
Baidu_0073.jpeg 412KB
Baidu_0047.jpeg 393KB
Baidu_0085.jpeg 378KB
Baidu_0205.jpeg 359KB
Baidu_0200.jpeg 355KB
Baidu_0392.jpeg 344KB
Baidu_0438.jpeg 337KB
Baidu_0558.jpeg 335KB
Baidu_0042.jpeg 319KB
Baidu_0038.jpeg 299KB
Baidu_0414.jpeg 292KB
Baidu_0377.jpeg 276KB
Baidu_0398.jpeg 272KB
Baidu_0545.jpeg 264KB
Baidu_0529.jpeg 263KB
Baidu_0414.jpeg 256KB
Baidu_0079.jpeg 237KB
Baidu_0078.jpeg 233KB
Baidu_0079.jpeg 231KB
Baidu_0470.jpeg 229KB
Baidu_0471.jpeg 223KB
Baidu_0297.jpeg 222KB
Baidu_0294.jpeg 221KB
Baidu_0475.jpeg 221KB
Baidu_0035.jpeg 216KB
Baidu_0450.jpeg 211KB
Baidu_0202.jpeg 210KB
Baidu_0273.jpeg 208KB
Baidu_0481.jpeg 205KB
Baidu_0050.jpeg 204KB
Baidu_0396.jpeg 203KB
Baidu_0410.jpeg 203KB
Baidu_0510.jpeg 202KB
Baidu_0005.jpeg 200KB
Baidu_0466.jpeg 198KB
Baidu_0024.jpeg 197KB
Baidu_0074.jpeg 195KB
Baidu_0026.jpeg 192KB
Baidu_0038.jpeg 182KB
Baidu_0541.jpeg 182KB
Baidu_0033.jpeg 181KB
Baidu_0104.jpeg 179KB
Baidu_0475.jpeg 179KB
Baidu_0010.jpeg 177KB
Baidu_0362.jpeg 177KB
Baidu_0453.jpeg 174KB
Baidu_0468.jpeg 171KB
Baidu_0082.jpeg 169KB
Baidu_0329.jpeg 166KB
Baidu_0581.jpeg 164KB
Baidu_0009.jpeg 161KB
Baidu_0509.jpeg 160KB
Baidu_0590.jpeg 159KB
Baidu_0088.jpeg 157KB
Baidu_0262.jpeg 155KB
Baidu_0081.jpeg 154KB
Baidu_0081.jpeg 154KB
Baidu_0145.jpeg 153KB
Baidu_0596.jpeg 150KB
Baidu_0547.jpeg 149KB
Baidu_0078.jpeg 149KB
Baidu_0344.jpeg 147KB
Baidu_0494.jpeg 146KB
Baidu_0019.jpeg 144KB
Baidu_0371.jpeg 144KB
Baidu_0382.jpeg 142KB
Baidu_0553.jpeg 141KB
Baidu_0142.jpeg 141KB
Baidu_0275.jpeg 141KB
Baidu_0291.jpeg 140KB
Baidu_0572.jpeg 139KB
Baidu_0075.jpeg 139KB
Baidu_0355.jpeg 138KB
Baidu_0303.jpeg 137KB
Baidu_0376.jpeg 135KB
Baidu_0513.jpeg 129KB
Baidu_0538.jpeg 128KB
Baidu_0481.jpeg 128KB
Baidu_0541.jpeg 127KB
Baidu_0087.jpeg 127KB
Baidu_0323.jpeg 126KB
Baidu_0569.jpeg 125KB
Baidu_0282.jpeg 124KB
Baidu_0128.jpeg 123KB
Baidu_0483.jpeg 123KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2128
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功