%% 学习目标:城市遍历问题(蚁群算法)
function f=ACOTSP
% C表示n个城市的坐标,n×2的矩阵
% NC_max表示最大迭代次数
% m表示蚂蚁个数
% Alpha表示表征信息素重要程度的参数
% Beta表示表征启发式因子重要程度的参数
% Rho表示信息素蒸发系数
% Q表示信息素增加强度系数
% R_best表示各代最佳路线
% L_best表示各代最佳路线的长度
x=[51 27 56 21 4 6 58 71 54 53 94 18 89 33 12 25 24 58 71 94 17 38 13 82 12 58 45 11 47 4]';
y=[14 81 67 92 64 19 98 18 62 69 30 54 10 46 34 18 42 69 61 78 16 40 10 7 32 17 21 26 35 90]';
C=[x y];
NC_max=50;
m=30;
Alpha=1.4;
Beta=2.2;
Rho=0.15;
Q=10^6;
%%%%%%%%变量初始化%%%%%%%%%%%%%%%%
n=size(C,1); %n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
%i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
end
D(j,i)=D(i,j); %对称矩阵
end
end
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵
Tabu=zeros(m,n); %存储并记录路径的生成
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度
L_ave=zeros(NC_max,1); %各代路线的平均长度
while NC<=NC_max %停止条件之一:达到最大迭代次数,停止
%%%%%%%%将m只蚂蚁放到n个城市上%%%%%%%%%%%%
Randpos=[]; %随即存取
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%%%%%%%m只蚂蚁按概率函数选择下一座城市,完成各自的周游%%%%%%%%%%%%
for j=2:n %所在城市不计算
for i=1:m
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0 %开始时置0
J(Jc)=k;
Jc=Jc+1; %访问的城市个数自加1
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%%%%%%%记录本次迭代最佳路线%%%%%%%%%%%%
L=zeros(m,1); %开始距离为0,m*1的列向量
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
end
L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离
end
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
L_ave(NC)=mean(L); %此轮迭代后的平均距离
NC=NC+1; %迭代继续
%%%%%%%%更新信息素%%%%%%%%%%%%%%%%
Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
%此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
%此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
%%%%%%%%禁忌表清零%%%%%%%%%%%%
Tabu=zeros(m,n); %%直到最大迭代次数
end
%%%%%%%%结果%%%%%%%%%%%%
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
figure
subplot(1,2,1); %绘制第一个子图形
DrawRoute(C,Shortest_Route); %画路线图的子函数
subplot(1,2,2); %绘制第二个子图形
plot(L_best);
hold on
plot(L_ave,'r');
title('平均距离和最短距离')
%% 大仙QQ:1960009019
%% 在线教育微信公众号:大仙一品堂