# Boosting 3D Object Detection via Object-Focused Image Fusion
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/boosting-3d-object-detection-via-object/3d-object-detection-on-sun-rgbd-val)](https://paperswithcode.com/sota/3d-object-detection-on-sun-rgbd-val?p=boosting-3d-object-detection-via-object)
This is a [MMDetection3D](https://github.com/open-mmlab/mmdetection3d) implementation of the paper Yang et al, "Boosting 3D Object Detection via Object-Focused Image Fusion".
> Boosting 3D Object Detection via Object-Focused Image Fusion
> Hao Yang*, Chen Shi*, Yihong Chen, Liwei Wang
>
#### [paper](https://arxiv.org/abs/2207.10589)
![Pipeline](figs/pipeline.png)
## Prerequisites
The code is tested with Python3.7, PyTorch == 1.8, CUDA == 11.1, mmdet3d == 0.18.1, mmcv_full == 1.3.18 and mmdet == 2.14. We recommend you to use anaconda to make sure that all dependencies are in place. Note that different versions of the library may cause changes in results.
**Step 1.** Create a conda environment and activate it.
```
conda create --name demf python=3.7
conda activate demf
```
**Step 2.** Install [MMDetection3D](https://github.com/open-mmlab/mmdetection3d) following the instruction [here](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/getting_started.md).
**Step 3.** Prepare SUN RGB-D Data following the procedure [here](https://github.com/open-mmlab/mmdetection3d/tree/master/data/sunrgbd).
## Getting Started
**Step 1.** First we need to train a [Deformable DETR](https://arxiv.org/abs/2010.04159?context=cs) on SUN RGB-D image data to get the checkpoint of image branch.
```shell
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT train.py configs/deformdetr/imvotenet_deform.py --launcher pytorch ${@:3}
```
Or you can download the pre-trained image branch [here](https://drive.google.com/file/d/1H0SGOSvfYU45ID38CvQohIyAUeAXm3Ra/view?usp=sharing).
**Step 2.**
Specify the path to the pre-trained image branch in [config](configs/demf/demf_votenet.py).
**Step 3.** Train our DeMF using the following command.
```shell
python -m torch.distributed.launch --nproc_per_node=8 --master_port=$PORT train.py configs/demf/demf_votenet.py --launcher pytorch ${@:3}
```
We also provide pre-trained DeMF [here](https://drive.google.com/file/d/1s7mOJbz3__qdGLpA10MbK2KLHDIX6rmX/view?usp=sharing). Use eval.py to evaluate the pretrained model and you will get the 65.5mAP@0.25 and 46.1mAP@0.5.
```shell
python -m torch.distributed.launch --nproc_per_node=8 --master_port=$PORT test.py --config configs/demf/demf_votenet.py --checkpoint $CHECKPOINT --eval mAP --launcher pytorch ${@:4}
```
## Main Results
We re-implemented VoteNet and ImVoteNet, which are some improvement over the original results.
Method | Point Backbone | Input | mAP@0.25 | mAP@0.5 |
:----: | :----: | :----: | :----: | :----: |
[VoteNet](configs/baseline/votenet.py) | PointNet++ | PC | 60.0 | 41.3 |
[ImVoteNet](configs/baseline/imvotenet.py) | PointNet++ | PC+RGB | 64.4 | 43.3 |
[DeMF(VoteNet based)](configs/demf/demf_votenet.py) | PointNet++ | PC+RGB | 65.6 (65.3) | 46.1 (45.4) |
DeMF(FCAF3D based) | HDResNet34 | PC+RGB | 67.4 (67.1) | 51.2 (50.5) |
## DeMF (Fcaf3d based)
We release the code of the DeMF (Fcaf3d based) in DeMF_fcaf branch.
## Citation
If you find this work useful for your research, please cite our paper:
```
@misc{https://doi.org/10.48550/arxiv.2207.10589,
author = {Yang, Hao and Shi, Chen and Chen, Yihong and Wang, Liwei},
title = {Boosting 3D Object Detection via Object-Focused Image Fusion},
publisher = {arXiv},
year = {2022},
}
```
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
通过对象聚焦图像融合增强3D对象检测.zip (34个子文件)
DeMF-main
tools
dist_train.sh 292B
demf
__init__.py 137B
core
__init__.py 19B
bbox
__init__.py 21B
coders
__init__.py 40B
class_agnostic_bbox_coder.py 8KB
engine
__init__.py 22B
default.py 6KB
modeling
__init__.py 67B
heads
__init__.py 39B
class_agnostic_vote_head.py 39KB
layers
__init__.py 61B
deform_detr_encoder.py 6KB
transformer.py 3KB
detectors
__init__.py 54B
imvotenet_deform.py 30KB
demfnet.py 11KB
eval.py 5KB
LICENSE 1KB
configs
demf
demf_votenet.py 9KB
baseline
votenet.py 1KB
imvotenet.py 9KB
_base_
default_runtime.py 485B
schedules
schedule_3x.py 399B
datasets
sunrgbd-3d-10class.py 3KB
models
imvotenet_image.py 3KB
votenet.py 3KB
deformdetr
imvotenet_deform.py 4KB
imvotenet_image.py 3KB
figs
pipeline.png 1.03MB
requirements.txt 147B
.gitignore 297B
train.py 5KB
README.md 4KB
共 34 条
- 1
资源评论
快撑死的鱼
- 粉丝: 1w+
- 资源: 9149
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功