<p align="center">
<img src="framework.png" width="800">
<br />
<br />
</p>
# HR
Official implementation of the paper [Deep Unified Representation for Heterogeneous Recommendation](https://arxiv.org/abs/2201.05861).
Accepted by the ACM Web Conference 2022 (WWW '22)
[中文版算法介绍](https://zhuanlan.zhihu.com/p/474148693)
## Dataset
In this paper, we use the Douban dataset stored in `data.tar.xz`.
Please uncompress it (`tar -xf data.tar.xz`) and put it in the working directory.
## Usage
Before runing the code, please make sure that you have installed the dependency. You can install them with
```
pip install -r requirements.txt
```
Our code is tested on `python 3.7`.
The next step is to prepare the configuration file. We provides the configurations of our proposed model (DURation) and baselines in `configs` fold as examples. To reproduce the results report in our paper, one just need change the path to your local path in the configuration.
Then, you can run the program with simple one-line code. Take the DURation model as a example, there is a `duration.json` file in `configs`.
```
python train_hete.py duration
```
It is worth note that the configuration file must be put in `configs`. To test the homogeneous models, just replace `train_hete.py` with `train_homo.py`. The program will output the results on screen while save the log to a certain path.
## Models
Currently, we support the following models:
+ **DeepMF**(2017): Deep Matrix Factorization Models for Recommender Systems
+ **FISM**(2013): Fism: factored item similarity models for top-n recommender systems.
+ **NAIS**(2018): Nais: Neural attentive item similarity model for recommendation.
+ **DeepFM**(2017): DeepFM: a factorization-machine based neural network for CTR prediction
+ **xDeepFM**(2018): xdeepfm: Combining explicit and implicit feature interactions for recommender systems
+ **AFM**(2017): Attentional factorization machines: Learning the weight of feature interactions via attention networks
+ **DSSM**(2013): Learning deep structured semantic models for web search using clickthrough data
+ **Wide & Deep**(2016): Wide & deep learning for recommender systems
+ **autoInt**(2019): Autoint: Automatic feature interaction learning via selfattentive neural networks
+ **CCCFNet**(2012): Cross-domain collaboration recommendation
+ **DDTCDR**(2020): DDTCDR: Deep dual transfer cross domain recommendation
## Cite
```
@inproceedings{lu2022deep,
title={Deep Unified Representation for Heterogeneous Recommendation},
author={Lu, Chengqiang and Yin, Mingyang and Shen, Shuheng and Ji, Luo and Liu, Qi and Yang, Hongxia},
booktitle={Proceedings of the ACM Web Conference 2022},
pages={2141--2152},
year={2022}
}
```
快撑死的鱼
- 粉丝: 2w+
- 资源: 9156
最新资源
- 图形配置运动控制软件框架Demo 开发语言:C# 1.图形可放大缩小,任意位置摆放,工具增删改; 2.参数加载,另存为,保存; 3.仿真界面显示,程序可增删改; 4.目前适配SMC-604控制器
- Matlab通信边缘计算通信仿真 雷达跟踪算法matlab 跟踪滤波:卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波 matlab遗传算法粒子群路径规划算法改进
- 狼群算法求解柔性车间调度matlab版 有源码提供学习 可直接运行
- lunwen复现基于改进人工鱼群法的机器人,无人机,无人车,无人船的路径规划算法,MATLAB 在基本算法中加入了自适应视野和步长,加入了启发选择机制 该代码运行结果是那四个栅格地图的一个,只包含I
- 永磁同步电机直接公式法计算,它是将MTPA和弱磁结合起来应用,弱磁方法选择的是公式法(直接计算法) 包括直接法弱磁控制基本原理、实现方法及仿真 最最重要的提供从内环到外环电流环的仿真步骤,各个参数
- 三相逆变器之下垂控制?负载突变分析 图一控制阶跃信号为0.7 图二整体结构控制图 图三负载突变时,电流幅值发生变化曲线图 图四负载突变时,功率发生变化曲线图
- 灰狼算法优化支持向量机(GWO- VMD) 1、适合新手学习使用、保证运行哦 2、GWOSVM,gwosvm 适合新手学习,研究程序,代码很齐全 3、注释也很多,(matlab)程序哦 4、带入接带
- 光伏逆变器低电压穿越仿真模型,boost加NPC拓扑结构,基于MATLAB Simulink建模仿真 具备中点平衡SVPWM控制,正负序分离控制,pll,可进行低电压穿越仿真 仿真模型使用MATL
- 交错并联Boost PFC仿真电路模型 采用输出电压外环,电感电流内环的双闭环控制方式 交流侧输入电流畸变小,波形良好,如效果图所示 simulink仿真 matlab simulink仿真模型
- 永磁同步电机最大转矩电流比控制MTPA,id=0控制仿真及其对比,可帮助更好理解其区别 MTPA单位电流产生最大的输出扭矩,或者具有相同转矩情况下该电流幅值最小,该控制方法相对电流小=可以减小电机损
- comsol固态纳米孔稳态仿真
- STM32单片机指纹密码锁仿真 仿真程序 功能: 1.键盘解锁 2.指纹解锁 3.可修改密码 3.蜂鸣器 警报 4.LED灯 5.LCD显示屏 资料(源码 proteus仿真电路 演示视频)
- 西门子PID程序西门子PLC 1200和多台G120西门子变频器Modbud RTU通讯,带西门子触摸屏,带变频器参数 Modbus通讯报文详细讲解,PID自写FB块无密码可以直接应用到程序,PID带
- 光伏系统+boost电路+单相spwm逆变并网仿真 直流母线电压400V 输出交流电压220V 负载可调 THD小于5% 纹波小 simulink
- 基于yolov5的布匹缺陷检测(含源码和数据集)
- 永磁同步电机超前角弱磁控制,抵抗负载扰动,切弱磁的过程较为平滑,主要原理是通过电压反馈,得到偏转角度theta,并通过id=iscos(theta)的方式控制弱磁电流 该弱磁控制为一个多闭环系统,由
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈