<p align="center">
<img src="framework.png" width="800">
<br />
<br />
</p>
# HR
Official implementation of the paper [Deep Unified Representation for Heterogeneous Recommendation](https://arxiv.org/abs/2201.05861).
Accepted by the ACM Web Conference 2022 (WWW '22)
[中文版算法介绍](https://zhuanlan.zhihu.com/p/474148693)
## Dataset
In this paper, we use the Douban dataset stored in `data.tar.xz`.
Please uncompress it (`tar -xf data.tar.xz`) and put it in the working directory.
## Usage
Before runing the code, please make sure that you have installed the dependency. You can install them with
```
pip install -r requirements.txt
```
Our code is tested on `python 3.7`.
The next step is to prepare the configuration file. We provides the configurations of our proposed model (DURation) and baselines in `configs` fold as examples. To reproduce the results report in our paper, one just need change the path to your local path in the configuration.
Then, you can run the program with simple one-line code. Take the DURation model as a example, there is a `duration.json` file in `configs`.
```
python train_hete.py duration
```
It is worth note that the configuration file must be put in `configs`. To test the homogeneous models, just replace `train_hete.py` with `train_homo.py`. The program will output the results on screen while save the log to a certain path.
## Models
Currently, we support the following models:
+ **DeepMF**(2017): Deep Matrix Factorization Models for Recommender Systems
+ **FISM**(2013): Fism: factored item similarity models for top-n recommender systems.
+ **NAIS**(2018): Nais: Neural attentive item similarity model for recommendation.
+ **DeepFM**(2017): DeepFM: a factorization-machine based neural network for CTR prediction
+ **xDeepFM**(2018): xdeepfm: Combining explicit and implicit feature interactions for recommender systems
+ **AFM**(2017): Attentional factorization machines: Learning the weight of feature interactions via attention networks
+ **DSSM**(2013): Learning deep structured semantic models for web search using clickthrough data
+ **Wide & Deep**(2016): Wide & deep learning for recommender systems
+ **autoInt**(2019): Autoint: Automatic feature interaction learning via selfattentive neural networks
+ **CCCFNet**(2012): Cross-domain collaboration recommendation
+ **DDTCDR**(2020): DDTCDR: Deep dual transfer cross domain recommendation
## Cite
```
@inproceedings{lu2022deep,
title={Deep Unified Representation for Heterogeneous Recommendation},
author={Lu, Chengqiang and Yin, Mingyang and Shen, Shuheng and Ji, Luo and Liu, Qi and Yang, Hongxia},
booktitle={Proceedings of the ACM Web Conference 2022},
pages={2141--2152},
year={2022}
}
```
快撑死的鱼
- 粉丝: 1w+
- 资源: 9149
最新资源
- 数据库课程设计-仓库管理系统中文最新版本
- 技术资料分享TF卡资料很好的技术资料.zip
- 技术资料分享TF介绍很好的技术资料.zip
- 10、安徽省大学生学科和技能竞赛A、B类项目列表(2019年版).xlsx
- 9、教育主管部门公布学科竞赛(2015版)-方喻飞
- C语言-leetcode题解之83-remove-duplicates-from-sorted-list.c
- C语言-leetcode题解之79-word-search.c
- C语言-leetcode题解之78-subsets.c
- C语言-leetcode题解之75-sort-colors.c
- C语言-leetcode题解之74-search-a-2d-matrix.c
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈