# `urban_road_filter`: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles
<img src="img/urban_road_filter_anim01.gif" height=620/> <img src="img/urban_road_filter_static01.png" height=620/>
# Dependency
- [ROS](http://wiki.ros.org/ROS/Installation) (tested with Kinetic and Melodic)
- [PCL](https://pointclouds.org/)
# Install
Use the following commands to download and compile the package.
```
cd ~/catkin_ws/src
git clone https://github.com/jkk-research/urban_road_filter
catkin build urban_road_filter
```
# Getting started
Issue the following commands to start roscore, download and play sample data, and start the algorithm with visualization. You can also watch this as a [youtube tutorial](https://www.youtube.com/watch?v=HHnj4VcbSy4).
In a **new terminal** start roscore:
```
roscore
```
In a **new terminal** go to your bag folder (e.g. `~/Downloads`):
```
cd ~/Downloads
```
Download a sample rosbag (~3,3 GB):
```r
wget https://laesze-my.sharepoint.com/:u:/g/personal/herno_o365_sze_hu/EYl_ahy5pgBBhNHt5ZkiBikBoy_j_x95E96rDtTsxueB_A?download=1 -O leaf-2021-04-23-campus.bag
```
Play rosbag:
```r
rosbag play -l ~/Downloads/leaf-2021-04-23-campus.bag
```
In a **new terminal** start the `urban_road_filter` node, `rviz` and `rqt_reconfigure` with roslaunch:
```
roslaunch urban_road_filter demo1.launch
```
# Cite & paper
If you use any of this code please consider citing the [paper](https://www.mdpi.com/1424-8220/22/1/194):
```bibtex
@Article{roadfilt2022horv,
title = {Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles},
author = {Horváth, Ernő and Pozna, Claudiu and Unger, Miklós},
journal = {Sensors},
volume = {22},
year = {2022},
number = {1},
url = {https://www.mdpi.com/1424-8220/22/1/194},
issn = {1424-8220},
doi = {10.3390/s22010194}
}
```
# Related solutions
- [`points_preprocessor`](https://github.com/Autoware-AI/core_perception/tree/master/points_preprocessor) `ray_ground_filter` and `ring_ground_filter` (ROS)
- [`linefit_ground_segmentation`](https://github.com/lorenwel/linefit_ground_segmentation) (ROS)
- [`curb_detection`](https://github.com/linyliny/curb_detection) (ROS)
- [`3DLidar_curb_detection`](https://github.com/SohaibAl-emara/3D_Lidar_Curb_Detection) (ROS)
- Many more algorithms without code mentioned in the [paper](https://doi.org/10.3390/s22010194).
# Videos and images
[<img src="img/yt_demo01.png" width=213/>](https://www.youtube.com/watch?v=T2qi4pldR-E)
[<img src="img/yt_tutorial01.png" width=213/>](https://www.youtube.com/watch?v=HHnj4VcbSy4)
[<img src="img/yt_demo02.png" width=213/>](https://www.youtube.com/watch?v=9tdzo2AyaHM)
[<img src="img/yt_demo03.png" width=213/>](https://www.youtube.com/watch?v=lp6q_QvWA-Y)
<img src="img/marker_poly01.png" width=440/>
<img src="img/marker_road_high01.png" width=440/>
<img src="img/marker_poly02.png" width=440/>
# ROS publications / subscriptions
```mermaid
flowchart LR
P[points] -->|sensor_msgs/PointCloud2| U(urban_road_filt)
U --> |sensor_msgs/PointCloud2| A[curb]
U --> |sensor_msgs/PointCloud2| B[road]
U --> |sensor_msgs/PointCloud2| C[road_probably]
U --> |sensor_msgs/PointCloud2| D[roi]
U --> |visualization_msgs/MarkerArray| E[road_marker]
```
没有合适的资源?快使用搜索试试~ 我知道了~
基于激光雷达的自动驾驶汽车城市道路和人行道实时检测_C++_代码_相关文件_下载
共50个文件
png:19个
pdf:9个
cpp:6个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 5 下载量 36 浏览量
2022-07-12
22:10:59
上传
评论 2
收藏 24.34MB ZIP 举报
温馨提示
urban_road_filter: 一种基于激光雷达的实时城市道路和人行道检测算法,用于自动驾驶汽车 依赖 ROS(用 Kinetic 和 Melodic 测试) PCL 安装 使用以下命令下载和编译包。 cd ~/catkin_ws/src git clone https://github.com/jkk-research/urban_road_filter catkin build urban_road_filter 入门 发出以下命令来启动 roscore,下载和播放示例数据,并以可视化方式启动算法。您也可以将此作为youtube 教程观看。 在一个新的终端启动 roscore: roscore 在一个新的终端转到你的包文件夹(例如~/Downloads): cd ~/Downloads 下载一个示例 rosbag (~3,3 GB): 更多详情、使用方法,请下载后阅读README.md文件
资源推荐
资源详情
资源评论
收起资源包目录
urban_road_filter-main.zip (50个子文件)
urban_road_filter-main
config
demo1.rviz 9KB
RQT.perspective 6KB
docs
sensors_paper_urban_road_filter.pdf 4.46MB
img
fig09b.png 2.87MB
urban_road_filter_anim01.gif 2.54MB
fig11a.png 200KB
marker_poly02.png 1.34MB
fig08.png 1.34MB
fig01.pdf 595KB
fig06.pdf 424KB
fig09a.png 2.73MB
urban_road_filter_example01zoom.svg 68KB
fig09c.png 2.38MB
fig10b.png 345KB
urban_road_filter_example02.png 170KB
fig04.pdf 100KB
urban_road_filter_example02zoom.svg 155KB
yt_demo01.png 36KB
yt_demo03.png 50KB
urban_road_filter_static01.png 537KB
fig03.pdf 548KB
fig11b.png 208KB
fig10a.png 431KB
yt_tutorial01.png 26KB
yt_demo04.png 26KB
marker_poly01.png 944KB
fig12.pdf 102KB
urban_road_filter_explain01.svg 26KB
README.md 387B
fig02.pdf 795KB
marker_road_high01.png 806KB
urban_road_filter_example01.png 352KB
yt_demo02.png 51KB
fig07.pdf 126KB
fig05.pdf 200KB
rosgraph01.svg 72KB
cfg
LidarFilters.cfg 4KB
include
urban_road_filter
data_structures.hpp 5KB
launch
demo1.launch 397B
LICENSE 2KB
src
blind_spots.cpp 11KB
lidar_segmentation.cpp 25KB
star_shaped_search.cpp 9KB
main.cpp 2KB
x_zero_method.cpp 3KB
z_zero_method.cpp 3KB
.gitignore 278B
CMakeLists.txt 4KB
README.md 3KB
package.xml 3KB
共 50 条
- 1
资源评论
- weixin_479731102022-08-12资源质量不错,和资源描述一致,内容详细,对我很有用。
- m0_748727722022-11-15超级好的资源,很值得参考学习,对我启发很大,支持!
- m0_505889512023-03-20超级好的资源,很值得参考学习,对我启发很大,支持!
- dreamy_on2024-06-29资源很受用,资源主总结的很全面,内容与描述一致,解决了我当下的问题。
- 2301_774853122024-03-20感谢资源主的分享,这个资源对我来说很有用,内容描述详尽,值得借鉴。
快撑死的鱼
- 粉丝: 1w+
- 资源: 9149
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功