# Welcome to the AI Toolkit for Azure IoT Edge
The integration of Azure Machine Learning and Azure IoT Edge enables organizations and developers to apply AI and ML to data that can’t make it to the cloud due to data sovereignty, privacy, and/or bandwidth issues. All models created using Azure Machine Learning can now be deployed to IoT gateways and devices with the Azure IoT Edge runtime. Models are operationalized as containers and can run on many types of hardware, from very small devices all the way to powerful servers.
We're releasing this toolkit to help get you started with AI and Azure IoT Edge. The toolkit will show you how to package deep learning models in Azure IoT Edge-compatible Docker containers and expose those models as REST APIs. We've included examples to help get you started, but the possibilities are endless. We'll be adding new examples and tools often. The models can be used as-is or and customized to better meet your specific needs and use cases.
Please ask any questions on our [forum](https://social.msdn.microsoft.com/forums/azure/en-US/home?forum=MachineLearning). We welcome your feedback and contributions and look forward to building together.
## Concepts
* [Azure Machine Learning](https://docs.microsoft.com/en-us/azure/machine-learning/preview/) is designed for data scientists to build, deploy, manage, and monitor models at any scale
* [Azure IoT Edge](https://aka.ms/azure-iot-edge-doc) moves cloud analytics and custom business logic to devices as an Internet of Things (IoT) service that builds on top of IoT Hub
* AI Toolkit for Azure IoT Edge is an evolving set of scripts, sample code, and tutorials that enable you to easily set up a test environment and run AI and ML on an edge device
# Quick start
## AI on the edge
One use case for edge devices is image processing and object classification. For example, images taken by cameras of products on an assembly line in a factory may be analyzed for manufacturing defects without having to send the images to the cloud. To simplify this problem for the tutorial, we will create and deploy a model that will take in an image of a handwritten digit and predict what that number is. We will use the well-known [MNIST](http://yann.lecun.com/exdb/mnist/) data set and a pre-trained [TensorFlow](https://www.tensorflow.org/) model.
## Environment set up
If you don't have an Azure subscription, [create a free account](https://azure.microsoft.com/free/?WT.mc_id=A261C142F) before you begin.
1. [Install Azure Machine Learning](https://docs.microsoft.com/en-us/azure/machine-learning/preview/quickstart-installation)
1. [Create an IoT Hub and register an IoT Edge device](https://aka.ms/azure-iot-edge-doc)
1. [Create an IoT Edge device](https://github.com/Azure/ai-toolkit-iot-edge/tree/master/Azure%20IoT%20Edge%20on%20DSVM) with the Data Science VM (DSVM)
* You will need a connection string from the IoT Hub you created in the previous step
* This DSVM doubles as an IoT Edge device and the machine you can use to operationalize models
## Set up Model Management for Azure ML
If you are already an Azure ML user then skip to the next section.
If you are not using the DSVM from the previous section for Azure ML, then [set up Model Management](https://docs.microsoft.com/en-us/azure/machine-learning/preview/deployment-setup-configuration) on your machine.
Otherwise, follow these steps (more details in the [Model Management documentation](https://docs.microsoft.com/en-us/azure/machine-learning/preview/deployment-setup-configuration)):
1. Connect and log into the DSVM you created in the previous section
2. Open a command prompt (type `az ml -h` to see options)
3. Run the script below to configure Docker correctly (Docker is pre-installed on the DSVM). **Remember to log out and log back in after running the script.**
```
sudo /opt/microsoft/azureml/initial_setup.sh
```
4. Set up the environment (only needs to be done one time). Note when completing the environment setup:
* You are prompted to sign in to Azure. To sign in, use a web browser to open the page https://aka.ms/devicelogin and enter the provided code to authenticate.
* During the authentication process, you are prompted for an account to authenticate with. Important: Select an account that has a valid Azure subscription and sufficient permissions to create resources in the account.
* When the log-in is complete, your subscription information is presented and you are prompted whether you wish to continue with the selected account.
5. Register the environment provider by entering the following command:
```azurecli
az provider register -n Microsoft.MachineLearningCompute
```
6. Set up a local environment using the following command. The resource group name is optional.
```azurecli
az ml env setup -l [Azure Region, e.g. eastus2] -n [your environment name] [-g [existing resource group]]
```
7. The local environment setup command creates the following resources in your subscription:
* A resource group (if not provided, or if the name provided does not exist)
* A storage account
* An Azure Container Registry (ACR)
* An Application insights account
After setup completes successfully, set the environment to be used using the following command:
```azurecli
az ml env set -n [environment name] -g [resource group]
```
*Note:* For subsequent deployments, you only need to use the set command above to reuse it.
You are now ready to deploy your saved model as a web service.
## Create container for Azure IoT Edge
[Follow these steps](https://github.com/Azure/ai-toolkit-iot-edge/tree/master/MNIST%20classification%20with%20TensorFlow) to create the container for deployment to Azure IoT Edge running on your DSVM.
# Next Steps
Check out our set of rich tutorials, where you can create, train, and deploy models for [predictive maintenance](https://docs.microsoft.com/en-us/azure/machine-learning/preview/scenario-predictive-maintenance), [aerial image classification](https://docs.microsoft.com/en-us/azure/machine-learning/preview/scenario-aerial-image-classification), [energy demand time series forecasting](https://docs.microsoft.com/en-us/azure/machine-learning/preview/scenario-time-series-forecasting), and more. Then create your own!
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
没有合适的资源?快使用搜索试试~ 我知道了~
Azure IoT Edge 的 AI工具包_python_Jupyter_代码_下载
共55个文件
png:11个
md:10个
json:9个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 58 浏览量
2022-07-02
18:15:01
上传
评论
收藏 100KB ZIP 举报
温馨提示
Azure 机器学习和 Azure IoT Edge 的集成使组织和开发人员能够将 AI 和 ML 应用于由于数据主权、隐私和/或带宽问题而无法进入云的数据。使用 Azure 机器学习创建的所有模型现在都可以部署到具有 Azure IoT Edge 运行时的 IoT 网关和设备。模型作为容器进行操作,可以在多种类型的硬件上运行,从非常小的设备一直到功能强大的服务器。 我们发布此工具包是为了帮助您开始使用 AI 和 Azure IoT Edge。该工具包将向您展示如何将深度学习模型打包到与 Azure IoT Edge 兼容的 Docker 容器中,并将这些模型公开为 REST API。我们提供了一些示例来帮助您入门,但可能性是无穷无尽的。我们会经常添加新的示例和工具。这些模型可以按原样使用或定制,以更好地满足您的特定需求和用例。 更多详情、使用方法,请下载后阅读README.md文件
资源推荐
资源详情
资源评论
收起资源包目录
ai-toolkit-iot-edge-master.zip (55个子文件)
ai-toolkit-iot-edge
MNIST classification with TensorFlow
checkpoint 123B
my_ConvNet_MNIST_model.meta 75KB
my_ConvNet_MNIST_model.index 923B
webservice_invoke.py 572B
sampleimages
5.png 621B
9.png 577B
1.png 484B
0.png 458B
6.png 493B
2.png 338B
7.png 504B
4.png 488B
README.md 54B
8.png 415B
3.png 466B
webservice_driver.py 1KB
README.md 1KB
conda_dependencies.yml 1KB
LICENSE 1KB
Skin cancer detection
ViewController.cs 14KB
readme.md 4KB
skin_cancer_coreml_model
test_skin_cancer_app.py 2KB
train_skin_cancer_app.py 4KB
keras_to_coreml_converter.py 491B
DISCLAIMER 288B
Azure IoT Edge on DSVM
README.md 1KB
.gitignore 5KB
IoT Edge anomaly detection tutorial
deployment.json 3KB
00-anomaly-detection-tutorial.ipynb 22KB
aml_config
config.json 135B
iot-workshop-deployment-template.json 3KB
model.pkl 2KB
myenv.yml 535B
.ipynb_checkpoints
00-anomaly-detection-tutorial-checkpoint.ipynb 24KB
README.md 467B
temperature_data.csv 25KB
iot_score.py 1KB
README.md 7KB
amliotedge
Extensions
IoTEdge
install.sh 376B
TestArmWithCLI
azuredeploy.json 9KB
parameters-azuredeploy.json 521B
core
template-iothub.json 2KB
iotedgert.md 902B
template-parameters.json 656B
Instructions.md 8KB
Manifest.xml 2KB
Summary.md 3KB
template-ldeviceext-ciqs.json 9KB
template-tsi.json 2KB
datagenerators
SimulatedDevice.py 3KB
assets
artificial-intelli.png 10KB
installIoTEdge 513B
README.md 3KB
deploymodel 3KB
createNregister 2KB
共 55 条
- 1
资源评论
快撑死的鱼
- 粉丝: 2w+
- 资源: 9148
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 東耳篮球馆会员信息管理系统(编号:98721117).zip
- 房屋系统(编号:45266146).zip
- 大学生志愿者信息管理系统(编号:96654262).zip
- 房屋租赁系统(编号:49930163).zip
- 付费自习室管理系统(编号:46724236)(1).zip
- 学术论文撰写技巧:施一公提高英文论文写作能力的六点建议
- 科研真问题从何而来-中科院院士分享
- 通过matlab语言读取csv文件.zip
- 通过Django实现用户注册和登录的简单认证系统.zip
- 通过汇编语言计算两个整数和,将结果存储在另一个变量中.zip
- Aruba%20Instant%20On_2.3.0_apk-dl.com.apk.1.1
- Ruby参考手册中文CHM版最新版本
- RubyonRails字符串处理中文最新版本
- 基于 selenium 模拟微博登录爬虫资料齐全+详细文档+源码.zip
- 基于chromeDriver+selenium蓝桥杯题库爬虫资料齐全+详细文档+源码.zip
- 基于java+selenium爬虫资料齐全+详细文档+源码.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功