__NOTE: This CDM routine is working for single element models (i.e. it passes single element verification tests), but is highly unstable for multi-element models. If you spot a bug or any other inconsistency let me know (contact details below).__
# 3D Continuum Damage Mechanics VUMAT for Composite Materials
Explicit material subroutine (VUMAT) implementing a continuum damage mechanics (CDM) model for composite materials in Abaqus (in fixed format Fortran 77).
## Summary
The continuum damage mechanics model implemented in this subroutine is based on the work of several authors. Failure stresses are calculated according to the three-dimensional failure criteria developed by Catalanotti et al. [1]. Damage evolution is adapted from the work of Maimi et al. [2][3] and Tan et al. [4][5].
The verification directory contains the input files required to run single-element simulations that verify the model correctly predicts the failure stress and energy dissipation for different types of loading.
The examples directory contains the input files required to run a number of simple simulations illustrating the flexibility of the model.
## Usage
To run a simulation using subroutines your Abaqus installation must be linked with a Fortran compiler and compatible Visual Studio installation, see:
The model requires the following material properties to be defined in the simulation input (.inp) file:
**E<sub>11</sub>** = elastic modulus in the fiber direction
**E<sub>22</sub>**= elastic modulus transverse direction (in-plane)
**E<sub>33</sub>** = elastic modulus transverse direction (out-of-plane)
**ν<sub>12</sub>** = Poisson's ratio 12 direction
**ν<sub>13</sub>** = Poisson's ratio 13 direction
**ν<sub>23</sub>** = Poisson's ratio 23 direction
**G<sub>12</sub>** = shear modulus 12 direction
**G<sub>13</sub>** = shear modulus 13 direction
**G<sub>23</sub>** = shear modulus 23 direction
**X<sub>T</sub>** = tensile strength fiber direction
**X<sub>C</sub>** = compressive strength fiber direction
**Y<sub>T</sub><sup>is</sup>** = in-situ tensile strength transverse direction
**Y<sub>C</sub><sup>is</sup>** = in-situ compressive strength transverse direction
**S<sub>L</sub><sup>is</sup>** = in-situ longitudinal shear strength
**S<sub>T</sub><sup>is</sup>** = in-situ transverse shear strength
**η<sub>L</sub>** = shear friction coefficient longitudinal direction
**α<sub>0</sub>** = failure plane angle pure transverse compression
**G<sub>1+</sub>** = tensile fracture toughness fiber direction
**G<sub>1-</sub>** = compressive fracture toughness fiber direction
**G<sub>2+</sub>** = tensile fracture toughness transverse direction
**G<sub>6</sub>** = shear fracture toughness
## List of Fortran source code
- **composite_cdm.for** : Implementation of CDM model in fixed format Fortran 77 (compatible with all Abaqus installations)
## List of Verification Models
- **Tension_11** : Pure tension in fiber direction
- **Tension_22** : Pure tension in transverse direction
- **Compression_11** : Pure compression in fiber direction
- **Shear_12** : Shear in the 12 direction
- **Shear_23** : Shear in the 23 direction
## List of Example Models
- **placeholder** : TBD
***
Rutger Kok
PhD Candidate
email : rutger.kok@ed.ac.uk
Institute for Infrastructure and Environment
University of Edinburgh
Thomas Bayes Road, King's Buildings, Edinburgh EH9 3FG
United Kingdom
***
>[1] G. Catalanotti, P.P. Camanho, A.T. Marques
>Three-dimensional failure criteria for fiber-reinforced laminates
>Composite Structures 95 (2013) 63–79
>http://dx.doi.org/10.1016/j.compstruct.2012.07.016
>[2] P. Maimi, P.P. Camanho, J.A. Mayugo, C.G. Davila
>A continuum damage model for composite laminates: Part I – Constitutive model
>Mechanics of Materials 39 (2007) 897–908
>http://dx.doi.org/10.1016/j.mechmat.2007.03.005
>[3] P. Maimi, P.P. Camanho, J.A. Mayugo, C.G. Davila
>A continuum damage model for composite laminates: Part II – Computational implementation and validation
>Mechanics of Materials 39 (2007) 909–919
>http://dx.doi.org/10.1016/j.mechmat.2007.03.006
>[4] W. Tan, B. G. Falzon, L. N. S. Chiu, and M. Price
>Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates
>Composites Part A 71 (2015) 212–226.
>http://doi.org/10.1016/j.compositesa.2015.01.025
>[5] B. G. Falzon, H. Liu, and W. Tan
>Comment on ‘A tensorial based progressive damage model for fibre reinforced polymers’
>Composite Structures 176 (2017) 877–882.
>http://doi.org/10.1016/j.compstruct.2017.06.011
没有合适的资源?快使用搜索试试~ 我知道了~
在 Fortran ( Abaqus Explicit VUMAT) 中实现的复合材料 3D 连续介质损伤力学模型
共13个文件
inp:6个
py:2个
license:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 14 下载量 31 浏览量
2022-06-03
22:47:01
上传
评论 9
收藏 33KB ZIP 举报
温馨提示
显式材料子程序 (VUMAT) 在 Abaqus 中实现复合材料的连续损伤力学 (CDM) 模 要使用子例程运行模拟,您的 Abaqus 安装必须与 Fortran 编译器和兼容的 Visual Studio 安装相链接,请参阅: 该模型需要在模拟输入 (.inp) 文件中定义以下材料属性: E 11 = 纤维方向的弹性模量 E 22 = 横向弹性模量(平面内) E 33 = 横向弹性模量(向外平面) ν 12 = 泊松比 12 方向 ν 13 = 泊松比 13 方向 ν 23 = 泊松比 23 方向 G 12 = 剪切模量 12 方向 G 13 = 剪切模量 13 方向 G 23 = 剪切模量 23 方向 X T= 纤维方向抗拉强度 X C = 纤维方向抗压强度 Y T is = 横向原位抗拉强度 Y C =横向原位抗压强度 S L =原位纵向剪切强度S T = in-原位横向剪切强度 η L = 纵向剪切摩擦系数 α 0 = 破坏面角 纯横向压缩 G 1+ = 拉伸断裂韧性 纤维方向 G 1-= 纤维方向压缩断裂韧性 G 2+ = 横向拉伸断裂韧性 G 6 = 剪切断裂韧性
资源推荐
资源详情
资源评论
收起资源包目录
composite_cdm_tan-master.zip (13个子文件)
composite_cdm_tan-master
.gitignore 21B
README.md 5KB
LICENSE 26KB
verification
shear_23.inp 3KB
shear_12.inp 3KB
compression_22.inp 3KB
compression_11.inp 3KB
tension_11.inp 3KB
tension_22.inp 3KB
verify_subroutine.py 6KB
state_variable_dictionary.txt 1007B
insitu_prop_calculator.py 5KB
composite_cdm.for 33KB
共 13 条
- 1
快撑死的鱼
- 粉丝: 1w+
- 资源: 9149
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
- 3
前往页