# SCAred
[![pipeline status](https://gitlab.com/eshard/scared/badges/master/pipeline.svg)](https://gitlab.com/eshard/scared/commits/master)
[![PyPI version](https://badge.fury.io/py/scared.svg)](https://pypi.org/project/scared/)
[![Conda installer](https://anaconda.org/eshard/scared/badges/installer/conda.svg)](https://anaconda.org/eshard/scared)
[![Latest Conda release](https://anaconda.org/eshard/scared/badges/latest_release_date.svg)](https://anaconda.org/eshard/scared)
scared is a side-channel analysis framework.
## Getting started
### Prerequisites
You will need **Python 3.6+** to use and install scared. You can use pip (or any pip based tool like pipenv) or conda to install it.
### Installation
To install scared, you can use pip (or pipenv, or any other pip based-tool) or conda:
```bash
$ pip install scared
# or with Conda
$ conda install -c eshard scared
```
### Make a first cool thing
Start using scared by doing a cool thing:
```python
# First import the lib
import scared
# Define a selection function
@scared.attack_selection_function
def first_add_key(plaintext, guesses):
res = np.empty((plaintext.shape[0], len(guesses), plaintext.shape[1]), dtype='uint8')
for i, guess in enumerate(guesses):
res[:, i, :] = np.bitwise_xor(plaintext, guess)
return res
# Create an analysis CPA
a = scared.CPAAttack(
selection_function=first_add_key,
model=scared.HammingWeight(),
discriminant=scared.maxabs)
# Load some traces, for example a dpa v2 subset
ths = scared.traces.read_ths_from_ets('dpa_v2.ets')
# Create a container for your ths
container = scared.Container(ths)
# Run!
a.run(container)
```
## Documentation
To go further and learn all about scared, please go to [the full documentation](https://eshard.gitlab.io/scared).
## Contributing
All contributions, starting with feedbacks, are welcomed.
Please read [CONTRIBUTING.md](CONTRIBUTING.md) if you wish to contribute to the project.
## License
This library is licensed under LGPL V3 license. See the [LICENSE](LICENSE) file for details.
It is mainly intended for non-commercial use, by academics, students or professional willing to learn the basics of side-channel analysis.
If you wish to use this library in a commercial or industrial context, eshard provides commercial licenses under fees. Contact us!
## Authors
See [AUTHORS](AUTHORS.md) for the list of contributors to the project.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:scared-0.7.3.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
scared-0.7.3.tar.gz (66个子文件)
scared-0.7.3
MANIFEST.in 27B
PKG-INFO 4KB
tests
preprocesses
test_preprocesses_absolute_difference_combination.py 5KB
test_preprocesses_centered_product.py 5KB
test_preprocesses_simple.py 4KB
test_preprocesses_timefreq.py 9KB
__init__.py 0B
test_preprocess_decorator.py 3KB
test_preprocesses_product_combination.py 5KB
test_preprocesses_difference_combination.py 5KB
end_to_end
test_xe2e_mia.py 807B
test_e2e_anova.py 644B
__init__.py 0B
test_e2e_nicv.py 642B
test_e2e_snr.py 762B
test_e2e_cpa.py 632B
test_e2e_dpa.py 1KB
distinguishers
test_partitioned_distinguishers.py 13KB
test_distinguishers.py 9KB
__init__.py 0B
setup.cfg 1KB
scared
preprocesses
high_order
_base.py 3KB
time_freq.py 8KB
__init__.py 189B
standard.py 7KB
_base.py 2KB
__init__.py 230B
first_order.py 4KB
models.py 7KB
discriminants.py 3KB
aes
selection_functions
encrypt.py 6KB
__init__.py 45B
decrypt.py 3KB
__init__.py 88B
base.py 32KB
selection_functions
__init__.py 50B
base.py 7KB
des
selection_functions
encrypt.py 9KB
__init__.py 45B
decrypt.py 5KB
__init__.py 88B
base.py 41KB
__init__.py 2KB
container.py 6KB
analysis
template.py 7KB
__init__.py 440B
_analysis.py 3KB
base.py 11KB
distinguishers
template.py 4KB
partitioned.py 8KB
mia.py 4KB
__init__.py 823B
dpa.py 3KB
cpa.py 4KB
base.py 5KB
ttest.py 5KB
_utils.py 328B
__version__.py 102B
setup.py 525B
scared.egg-info
PKG-INFO 4KB
requires.txt 33B
not-zip-safe 1B
SOURCES.txt 2KB
top_level.txt 13B
dependency_links.txt 1B
README.md 2KB
共 66 条
- 1
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 等发达地区的无穷大无穷大无穷大请问
- 微藻检测19-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- NE555+74LS192+74LS48电子秒表课程设计报告(纯数电实现)
- 基于深度学习的视频描述综述:视觉与语言的桥梁
- 2024年全球干式变压器行业规模及市场占有率分析报告
- 用于Unity使用NuGet
- 微藻检测18-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 小红书2024新年市集合作方案解析与品牌营销策略
- 基于javaweb的沙发销售管理系统论文.doc
- 毕业设计Jupyter Notebook基于深度网络的垃圾识别与分类算法研究项目源代码,用PyTorch框架中的transforms方法对数据进行预处理操作,后经过多次调参实验,对比不同模型分类效果
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功