# Pytorch EO
Deep Learning for Earth Observation applications and research.
> ���� This project is in early development, so bugs and breaking changes are expected until we reach a stable version.
## Installation
Make sure that you have the dependencies installed.
```
pip install pytorch-eo
```
## Dependencies
Pytorch EO is built on top of:
- [Pytorch](https://pytorch.org/)
- [Torchvision](https://pytorch.org/vision/stable/index.html)
- [Pytorch-Lightning](https://www.pytorchlightning.ai/)
- [Rasterio](https://rasterio.readthedocs.io/en/latest/)
Do you need to learn these libraries first ? NO! You can just get started with our [examples](https://github.com/earthpulse/pytorch_eo/tree/main/examples) and [tutorials](https://github.com/earthpulse/pytorch_eo/tree/main/tutorials). However, if you plan to use Pytorch EO extensively and want to get the most out of it, you may have to become familiar with them.
## Examples
Learn by doing with our [examples](https://github.com/earthpulse/pytorch_eo/tree/main/examples).
### Ready to use Datasets
- [EuroSAT](https://github.com/phelber/EuroSAT)
<!-- ### Build your own Datasets
Using SCAN you can annotate your own data and access it directly through Pytorch EO. -->
## Research
Pytorch EO can be a useful tool for research:
- Flexibility: build and experiment with new models for EO applications.
- Reproducibility: use same data splits and random seeds to compare with others.
See the [examples](https://github.com/earthpulse/pytorch_eo/tree/main/examples).
## Production
Pytorch EO was built with production in mind from the beginning:
- Optimize model for production.
- Export models to torchscript.
<!-- - Upload models to our Models Universe
- Use models directly through SPAI -->
See the [examples](https://github.com/earthpulse/pytorch_eo/tree/main/examples).
<!-- ## Documentation
Read our [docs](https://earthpulse.github.io/pytorch_eo/). -->
## Contributing
Read the [CONTRIBUTING](https://github.com/earthpulse/pytorch_eo/blob/main/CONTRIBUTING.md) guide.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:pytorch_eo-21.9.27.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
pytorch_eo-21.9.27.tar.gz (40个子文件)
pytorch_eo-21.9.27
PKG-INFO 3KB
setup.cfg 38B
setup.py 2KB
README.md 2KB
pytorch_eo
metrics
__init__.py 0B
classification.py 103B
tasks
classification
ImageClassification.py 682B
__init__.py 53B
__init__.py 0B
BaseTask.py 3KB
segmentation
__init__.py 49B
ImageSegmentation.py 2KB
__init__.py 0B
utils
untar_file.py 274B
sensors.py 483B
read_image.py 433B
__init__.py 159B
image.py 842B
unzip_file.py 298B
download_url.py 259B
datasets
SegmentationDataset.py 2KB
SBSegmentationDataset.py 748B
MSClassificationDataset.py 729B
__init__.py 56B
ClassificationDataset.py 1KB
S2ClassificationDataset.py 271B
datasets
sen12ms
Sen12MS.py 9KB
__init__.py 37B
eurosat
EuroSATBase.py 5KB
__init__.py 64B
EuroSAT.py 2KB
EuroSATRGB.py 1KB
__init__.py 0B
land_cover_net
__init__.py 39B
LandCoverNet.py 6KB
pytorch_eo.egg-info
PKG-INFO 3KB
requires.txt 50B
SOURCES.txt 1KB
top_level.txt 11B
dependency_links.txt 1B
共 40 条
- 1
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功