# Pandas Profiling
![Pandas Profiling Logo Header](https://pandas-profiling.github.io/pandas-profiling/docs/assets/logo_header.png)
[![Build Status](https://travis-ci.com/pandas-profiling/pandas-profiling.svg?branch=master)](https://travis-ci.com/pandas-profiling/pandas-profiling)
[![Code Coverage](https://codecov.io/gh/pandas-profiling/pandas-profiling/branch/master/graph/badge.svg?token=gMptB4YUnF)](https://codecov.io/gh/pandas-profiling/pandas-profiling)
[![Release Version](https://img.shields.io/github/release/pandas-profiling/pandas-profiling.svg)](https://github.com/pandas-profiling/pandas-profiling/releases)
[![Python Version](https://img.shields.io/pypi/pyversions/pandas-profiling)](https://pypi.org/project/pandas-profiling/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/python/black)
<p align="center">
<a href="https://pandas-profiling.github.io/pandas-profiling/docs/master/rtd/">Documentation</a>
|
<a href="https://join.slack.com/t/pandas-profiling/shared_invite/zt-oe5ol4yc-YtbOxNBGUCb~v73TamRLuA">Slack</a>
|
<a href="https://stackoverflow.com/questions/tagged/pandas-profiling">Stack Overflow</a>
|
<a href="https://pandas-profiling.github.io/pandas-profiling/docs/master/rtd/pages/changelog.html#changelog">Latest changelog</a>
</p>
Generates profile reports from a pandas `DataFrame`.
The pandas `df.describe()` function is great but a little basic for serious exploratory data analysis.
`pandas_profiling` extends the pandas DataFrame with `df.profile_report()` for quick data analysis.
For each column the following statistics - if relevant for the column type - are presented in an interactive HTML report:
* **Type inference**: detect the [types](#types) of columns in a dataframe.
* **Essentials**: type, unique values, missing values
* **Quantile statistics** like minimum value, Q1, median, Q3, maximum, range, interquartile range
* **Descriptive statistics** like mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness
* **Most frequent values**
* **Histogram**
* **Correlations** highlighting of highly correlated variables, Spearman, Pearson and Kendall matrices
* **Missing values** matrix, count, heatmap and dendrogram of missing values
* **Text analysis** learn about categories (Uppercase, Space), scripts (Latin, Cyrillic) and blocks (ASCII) of text data.
* **File and Image analysis** extract file sizes, creation dates and dimensions and scan for truncated images or those containing EXIF information.
## Announcements
**Spark backend in progress**: We can happily announce that we're nearing v1 for the Spark backend for generating profile reports.
Beta testers wanted! The Spark backend will be released as a pre-release for this package.
**Monitoring time series?**: I'd like to draw your attention to [popmon](#popmon). Whereas pandas-profiling allows you to explore patterns in a single dataset, popmon allows you to uncover temporal patterns. It's worth checking out!
**Support `pandas-profiling`**
The development of `pandas-profiling` relies completely on contributions.
If you find value in the package, we welcome you to support the project directly through [GitHub Sponsors](https://github.com/sponsors/sbrugman)!
Please help me to continue to support this package.
Find more information: [Sponsor the project on GitHub](https://github.com/sponsors/sbrugman)
---
_Contents:_ **[Examples](#examples)** |
**[Installation](#installation)** | **[Documentation](#documentation)** |
**[Large datasets](#large-datasets)** | **[Command line usage](#command-line-usage)** |
**[Advanced usage](#advanced-usage)** | **[Support](#support)** | **[Go beyond](#go-beyond)** |
**[Support the project](#supporting-open-source)** | **[Types](#types)** | **[How to contribute](#contributing)** |
**[Editor Integration](#editor-integration)** | **[Dependencies](#dependencies)**
---
## Examples
The following examples can give you an impression of what the package can do:
* [Census Income](https://pandas-profiling.github.io/pandas-profiling/examples/master/census/census_report.html) (US Adult Census data relating income)
* [NASA Meteorites](https://pandas-profiling.github.io/pandas-profiling/examples/master/meteorites/meteorites_report.html) (comprehensive set of meteorite landings) [![Open In Colab](https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/github/pandas-profiling/pandas-profiling/blob/master/examples/meteorites/meteorites.ipynb) [![Binder](https://camo.githubusercontent.com/483bae47a175c24dfbfc57390edd8b6982ac5fb3/68747470733a2f2f6d7962696e6465722e6f72672f62616467655f6c6f676f2e737667)](https://mybinder.org/v2/gh/pandas-profiling/pandas-profiling/master?filepath=examples%2Fmeteorites%2Fmeteorites.ipynb)
* [Titanic](https://pandas-profiling.github.io/pandas-profiling/examples/master/titanic/titanic_report.html) (the "Wonderwall" of datasets) [![Open In Colab](https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/github/pandas-profiling/pandas-profiling/blob/master/examples/titanic/titanic.ipynb) [![Binder](https://camo.githubusercontent.com/483bae47a175c24dfbfc57390edd8b6982ac5fb3/68747470733a2f2f6d7962696e6465722e6f72672f62616467655f6c6f676f2e737667)](https://mybinder.org/v2/gh/pandas-profiling/pandas-profiling/master?filepath=examples%2Ftitanic%2Ftitanic.ipynb)
* [NZA](https://pandas-profiling.github.io/pandas-profiling/examples/master/nza/nza_report.html) (open data from the Dutch Healthcare Authority)
* [Stata Auto](https://pandas-profiling.github.io/pandas-profiling/examples/master/stata_auto/stata_auto_report.html) (1978 Automobile data)
* [Vektis](https://pandas-profiling.github.io/pandas-profiling/examples/master/vektis/vektis_report.html) (Vektis Dutch Healthcare data)
* [Colors](https://pandas-profiling.github.io/pandas-profiling/examples/master/colors/colors_report.html) (a simple colors dataset)
* [UCI Bank Dataset](https://pandas-profiling.github.io/pandas-profiling/examples/master/bank_marketing_data/uci_bank_marketing_report.html) (banking marketing dataset)
* [RDW](https://pandas-profiling.github.io/pandas-profiling/examples/master/rdw/rdw.html) (RDW, the Dutch DMV's vehicle registration 10 million rows, 71 features)
Specific features:
* [Russian Vocabulary](https://pandas-profiling.github.io/pandas-profiling/examples/master/features/russian_vocabulary.html) (demonstrates text analysis)
* [Cats and Dogs](https://pandas-profiling.github.io/pandas-profiling/examples/master/features/cats-and-dogs.html) (demonstrates image analysis from the file system)
* [Celebrity Faces](https://pandas-profiling.github.io/pandas-profiling/examples/master/features/celebrity-faces.html) (demonstrates image analysis with EXIF information)
* [Website Inaccessibility](https://pandas-profiling.github.io/pandas-profiling/examples/master/features/website_inaccessibility_report.html) (demonstrates URL analysis)
* [Orange prices](https://pandas-profiling.github.io/pandas-profiling/examples/master/features/united_report.html) and [Coal prices](https://pandas-profiling.github.io/pandas-profiling/examples/master/features/flatly_report.html) (showcases report themes)
Tutorials:
* [Tutorial: report structure using Kaggle data (advanced)](https://pandas-profiling.github.io/pandas-profiling/examples/master/tutorials/modify_report_structure.ipynb) (modify the report's structure) [![Open In Colab](https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:pandas-profiling-3.1.0.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
Python库 | pandas-profiling-3.1.0.tar.gz (197个子文件)
make.bat 1KB
setup.cfg 38B
flatly.bootstrap.min.css 124KB
united.bootstrap.min.css 120KB
bootstrap.min.css 118KB
bootstrap-theme.min.css 23KB
style.css 5KB
style.html 2KB
select.html 1KB
frequency_table.html 1KB
navigation.html 1KB
frequency_table_small.html 1KB
tabs.html 1KB
toggle_button.html 944B
javascript.html 904B
report.html 885B
batch_grid.html 652B
alerts.html 641B
sections.html 533B
table.html 469B
alert_high_correlation.html 418B
collapse.html 371B
diagram.html 353B
grid.html 287B
variable_info.html 275B
sample.html 240B
variable.html 239B
named_list.html 213B
footer.html 201B
alert_truncated.html 199B
alert_infinite.html 197B
alert_missing.html 194B
alert_type_date.html 194B
alert_zeros.html 181B
alert_high_cardinality.html 168B
alert_unsupported.html 166B
list.html 165B
alert_skewed.html 164B
alert_duplicates.html 152B
alert_constant.html 144B
alert_uniform.html 120B
duplicate.html 115B
alert_constant_length.html 115B
alert_unique.html 113B
alert_empty.html 17B
MANIFEST.in 693B
jquery-1.12.4.min.js 95KB
bootstrap.min.js 36KB
script.js 491B
LICENSE 1KB
Makefile 813B
README.md 21KB
CONTRIBUTING.md 7KB
PKG-INFO 25KB
PKG-INFO 25KB
profile_report.py 15KB
render_categorical.py 14KB
alerts.py 9KB
report.py 9KB
config.py 9KB
plot.py 9KB
formatters.py 8KB
render_real.py 8KB
dataframe.py 8KB
describe_categorical_pandas.py 8KB
typeset.py 7KB
overview.py 7KB
render_image.py 7KB
describe.py 6KB
describe_image_pandas.py 6KB
correlations.py 5KB
describe_numeric_pandas.py 5KB
serialize_report.py 5KB
summary_algorithms.py 4KB
expectations_report.py 4KB
render_path.py 4KB
render_count.py 4KB
correlations_pandas.py 4KB
missing.py 4KB
render_url.py 4KB
correlations.py 4KB
missing.py 4KB
container.py 4KB
flavours.py 4KB
summary_pandas.py 3KB
expectation_algorithms.py 3KB
render_boolean.py 3KB
console.py 3KB
frequency_table_utils.py 3KB
typeset_relations.py 3KB
context.py 3KB
render_date.py 3KB
render_complex.py 3KB
utils.py 3KB
summarizer.py 3KB
setup.py 2KB
templates.py 2KB
render_file.py 2KB
handler.py 2KB
notebook.py 2KB
共 197 条
- 1
- 2
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功