# Mind Foundry Horizon Client
This package contains a python client that can be used to interact with an instance of Mind Foundry Horizon. The client exposes a familiar interface that allows you to tackle forecasting problems with ease.
```python
from mindfoundry.client.horizon import Connection
from mindfoundry.client.horizon.models import HorizonForecaster
# Generate an API key in the Horizon dashboard
connection = Connection(
base_url="your Horizon instance",
api_key="your api key",
)
# Create a new forecasting model. See the complete documentation
# for a more in-depth explanation of each argument.
model = HorizonForecaster(
connection=connection,
name="My Forecaster",
targets=["target1", "target2", ...],
horizons=[1, 2, 3],
refinement=False,
)
# Train a model on some training data (a pandas dataframe)
model.fit(training_data)
# Make a prediction on new data
prediction = model.predict(new_data)
print(prediction.as_df().head())
# Save the model for later use
model.save("/path/to/model/file")
# Re-load the model
model = HorizonForecaster.load("/path/to/model/file", connection=connection)
# The model can be updated with new data in the same format
model.update(new_data_2)
new_prediction = model.predict()
```
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:mindfoundry.client.horizon-2.12.0.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
Python库 | mindfoundry.client.horizon-2.12.0.tar.gz (218个子文件)
setup.cfg 42B
README.md 1KB
PKG-INFO 2KB
PKG-INFO 2KB
forecaster.py 34KB
stages.py 17KB
classifier.py 16KB
stage_specification.py 13KB
pipeline.py 11KB
base.py 11KB
stage_config_update.py 10KB
classification_backtest_insight.py 8KB
algo_execution_data.py 8KB
__init__.py 7KB
dataset.py 7KB
post_dataset_upload_resource.py 7KB
pipelines_client.py 6KB
series_overview_schema.py 6KB
post_dataset_append_resource.py 5KB
trading_simulation_options.py 5KB
datasets_client.py 5KB
ingestion_process.py 4KB
lstm_backtest_stage_config.py 4KB
trading_algo.py 4KB
node_and_link.py 3KB
post_classification_prediction_resource.py 3KB
classification_prediction_result.py 3KB
get_unsampled_plot_resource.py 3KB
trading_specification_stage_config.py 3KB
label_frequencies_grouped_by_time.py 3KB
post_classification_backtest_resource.py 3KB
post_classification_prediction_with_merged_results_resource.py 3KB
column_passport.py 3KB
base.py 3KB
classification_backtest_stage.py 3KB
classification_backtest_config.py 3KB
get_backtest_export_resource.py 3KB
get_feature_export_resource.py 3KB
problem_specification_config.py 3KB
trading_specification_stage.py 3KB
algo_test_result.py 3KB
classification_discovery_config.py 3KB
pipeline_summary.py 3KB
post_predict_resource.py 3KB
classification_discovery_stage.py 3KB
put_algo_resource.py 3KB
expert_predict_form.py 3KB
put_stage_update_resource.py 3KB
pandas_series.py 3KB
lstm_backtest_stage.py 3KB
classification_specification_config.py 3KB
summary_score_metric.py 3KB
refinement_stage_config.py 3KB
get_feature_preview_resource.py 3KB
stationarisation_stage.py 3KB
put_stage_creation_resource.py 3KB
algo_spec.py 3KB
problem_specification_stage.py 3KB
feature_generation_stage.py 3KB
feature_generation_stage_config.py 3KB
classification_specification_stage.py 3KB
post_api_key_resource.py 3KB
get_data_slice_resource.py 3KB
all_datasets.py 3KB
algo_test_spec.py 2KB
predictions_dto.py 2KB
post_algo_test_resource.py 2KB
post_on_demand_predict_resource.py 2KB
get_insight_resource.py 2KB
trading_simulation_stage.py 2KB
lstm_prediction_stage.py 2KB
refinement_stage.py 2KB
put_rename_dataset_resource.py 2KB
get_feature_nodes_and_links_resource.py 2KB
values.py 2KB
stationarisation_stage_config.py 2KB
backtest_stage_config.py 2KB
get_column_plot_resource.py 2KB
get_column_acf_resource.py 2KB
get_column_correlation_resource.py 2KB
backtest_stage.py 2KB
get_column_mi_resource.py 2KB
prediction_stage.py 2KB
filter_stage.py 2KB
algo_execution_test_case.py 2KB
get_algo_test_cases_resource.py 2KB
post_run_pipeline_to_stage_resource.py 2KB
algo_execution_symbol.py 2KB
post_algo_cloning_resource.py 2KB
json_data.py 2KB
post_all_algo_resource.py 2KB
classification_backtest_form.py 2KB
feature_transform.py 2KB
classification_prediction_form.py 2KB
post_dataset_upload_json_resource.py 2KB
date_value_series.py 2KB
put_all_pipeline_resource.py 2KB
feature_nodes_and_links.py 2KB
out_of_date_report.py 2KB
get_individual_ingestion_process_resource.py 2KB
共 218 条
- 1
- 2
- 3
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- GEE错误集-Cannot add an object of type <Element> to the map. Might be fixable with an explicit .pdf
- 矩阵与线程的对应关系图
- 人体人员检测46-YOLO(v5至v9)、COCO、Darknet、TFRecord数据集合集.rar
- GEMM优化代码实现1
- 资料阅读器(先下载解压) 5.0.zip
- 人、垃圾、非垃圾检测18-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- java实现的冒泡排序 含代码说明和示例.docx
- 440379878861684smart-parking.zip
- 金智维RPA server安装包
- 二维码图形检测6-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord数据集合集.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功