# marshmallow_dataclass
[![Build Status](https://travis-ci.org/lovasoa/marshmallow_dataclass.svg?branch=master)](https://travis-ci.org/lovasoa/marshmallow_dataclass)
[![PyPI version](https://badge.fury.io/py/marshmallow-dataclass.svg)](https://badge.fury.io/py/marshmallow-dataclass)
Automatic generation of [marshmallow](https://marshmallow.readthedocs.io/) schemas from dataclasses.
Specifying a schema to which your data should conform is very useful, both for (de)serialization and for documentation.
However, using schemas in python often means having both a class to represent your data and a class to represent its schema, which means duplicated code that could fall out of sync. With the new features of python 3.6, types can be defined for class members, and that allows libraries like this one to generate schemas automatically.
An use case would be to document APIs (with [flasgger](https://github.com/rochacbruno/flasgger#flasgger), for instance) in a way that allows you to statically check that the code matches the documentation.
## How to use
You simply import
[`marshmallow_dataclass.dataclass`](https://lovasoa.github.io/marshmallow_dataclass/html/marshmallow_dataclass.html#marshmallow_dataclass.dataclass)
instead of
[`dataclasses.dataclass`](https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass).
It adds a `Schema` property to the generated class,
containing a marshmallow
[Schema](https://marshmallow.readthedocs.io/en/2.x-line/api_reference.html#marshmallow.Schema)
class.
If you need to specify custom properties on your marshmallow fields
(such as `attribute`, `error`, `validate`, `required`, `dump_only`, `error_messages`, `description` ...)
you can add them using the `metadata` argument of the
[`field`](https://docs.python.org/3/library/dataclasses.html#dataclasses.field)
function.
```python
from dataclasses import field
from marshmallow_dataclass import dataclass # Importing from marshmallow_dataclass instead of dataclasses
import marshmallow.validate
from typing import List, Optional
@dataclass
class Building:
# The field metadata is used to instantiate the marshmallow field
height: float = field(metadata={'validate': marshmallow.validate.Range(min=0)})
name: str = field(default="anonymous")
@dataclass
class City:
name: Optional[str]
buildings: List[Building] = field(default_factory=lambda: [])
# City.Schema contains a marshmallow schema class
city, _ = City.Schema().load({
"name": "Paris",
"buildings": [
{"name": "Eiffel Tower", "height":324}
]
})
# Serializing city as a json string
city_json, _ = City.Schema().dumps(city)
```
The previous syntax is very convenient, as the only change
you have to apply to your existing code is update the
`dataclass` import.
However, as the `.Schema` property is added dynamically,
it can confuse type checkers.
If you want to avoid that, you can also use the standard
`dataclass` decorator, and generate the schema manually
using
[`class_schema`](https://lovasoa.github.io/marshmallow_dataclass/html/marshmallow_dataclass.html#marshmallow_dataclass.class_schema)
:
```python
from dataclasses import dataclass
from datetime import datetime
import marshmallow_dataclass
@dataclass
class Person:
name: str
birth: datetime
PersonSchema = marshmallow_dataclass.class_schema(Person)
```
You can also declare the schema as a
[`ClassVar`](https://docs.python.org/3/library/typing.html#typing.ClassVar):
```python
from marshmallow_dataclass import dataclass
from marshmallow import Schema
from typing import ClassVar, Type
@dataclass
class Point:
x:float
y:float
Schema: ClassVar[Type[Schema]] = Schema
```
You can specify the
[`Meta`](https://marshmallow.readthedocs.io/en/3.0/api_reference.html#marshmallow.Schema.Meta)
just as you would in a marshmallow Schema:
```python
from marshmallow_dataclass import dataclass
@dataclass
class Point:
x:float
y:float
class Meta:
ordered = True
```
## installation
This package [is hosted on pypi](https://pypi.org/project/marshmallow-dataclass/) :
```shell
pipenv install marshmallow-dataclass
```
## Documentation
The project documentation is hosted on github pages:
- [documentation](https://lovasoa.github.io/marshmallow_dataclass/).
## Usage warning
This library depends on python's standard
[typing](https://docs.python.org/3/library/typing.html)
library, which is
[provisional](https://docs.python.org/3/glossary.html#term-provisional-api).
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:marshmallow_dataclass-0.5.2.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源详情
资源评论
资源推荐
收起资源包目录
marshmallow_dataclass-0.5.2.tar.gz (10个子文件)
marshmallow_dataclass-0.5.2
PKG-INFO 6KB
marshmallow_dataclass
__init__.py 11KB
marshmallow_dataclass.egg-info
PKG-INFO 6KB
requires.txt 37B
SOURCES.txt 276B
top_level.txt 22B
dependency_links.txt 1B
setup.cfg 38B
setup.py 916B
README.md 4KB
共 10 条
- 1
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- (源码)基于Spring Boot和MyBatis的社区问答系统.zip
- (源码)基于Spring Boot和WebSocket的人事管理系统.zip
- (源码)基于Spring Boot框架的云网页管理系统.zip
- (源码)基于Maude和深度强化学习的智能体验证系统.zip
- (源码)基于C语言的Papageno字符序列处理系统.zip
- (源码)基于Arduino的水质监测与控制系统.zip
- (源码)基于物联网的智能家居门锁系统.zip
- (源码)基于Python和FastAPI的Squint数据检索系统.zip
- (源码)基于Arduino的图片绘制系统.zip
- (源码)基于C++的ARMA53贪吃蛇游戏系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0