# Datafiles: A file-based ORM for dataclasses
Datafiles is a bidirectional serialization library for Python [dataclasses](https://docs.python.org/3/library/dataclasses.html) to synchronize objects to the filesystem using type annotations. It supports a variety of file formats with round-trip preservation of formatting and comments, where possible. Object changes are automatically saved to disk and only include the minimum data needed to restore each object.
[![Travis CI](https://img.shields.io/travis/com/jacebrowning/datafiles/main.svg?label=unix)](https://travis-ci.com/jacebrowning/datafiles)
[![AppVeyor](https://img.shields.io/appveyor/ci/jacebrowning/datafiles/main.svg?label=windows)](https://ci.appveyor.com/project/jacebrowning/datafiles)
[![Coveralls](https://img.shields.io/coveralls/jacebrowning/datafiles.svg)](https://coveralls.io/r/jacebrowning/datafiles)
[![PyPI License](https://img.shields.io/pypi/l/datafiles.svg)](https://pypi.org/project/datafiles)
[![PyPI Version](https://img.shields.io/pypi/v/datafiles.svg)](https://pypi.org/project/datafiles)
[![Gitter](https://img.shields.io/gitter/room/jacebrowning/datafiles?color=blue)](https://gitter.im/jacebrowning/datafiles)
Some common use cases include:
- Coercing user-editable files into the proper Python types
- Storing program configuration and data in version control
- Loading data fixtures for demonstration or testing purposes
- Synchronizing application state using file sharing services
- Prototyping data models agnostic of persistence backends
Watch [my lightning talk](https://www.youtube.com/watch?v=moYkuNrmc1I&feature=youtu.be&t=1225) for a demo of this in action!
## Overview
Take an existing dataclass such as [this example](https://docs.python.org/3/library/dataclasses.html#module-dataclasses) from the documentation:
```python
from dataclasses import dataclass
@dataclass
class InventoryItem:
"""Class for keeping track of an item in inventory."""
name: str
unit_price: float
quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
```
and decorate it with a directory pattern to synchronize instances:
```python
from datafiles import datafile
@datafile("inventory/items/{self.name}.yml")
class InventoryItem:
...
```
Then, work with instances of the class as normal:
```python
>>> item = InventoryItem("widget", 3)
```
```yaml
# inventory/items/widget.yml
unit_price: 3.0
```
Changes to the object are automatically saved to the filesystem:
```python
>>> item.quantity_on_hand += 100
```
```yaml
# inventory/items/widget.yml
unit_price: 3.0
quantity_on_hand: 100
```
Changes to the filesystem are automatically reflected in the object:
```yaml
# inventory/items/widget.yml
unit_price: 2.5 # <= manually changed from "3.0"
quantity_on_hand: 100
```
```python
>>> item.unit_price
2.5
```
Objects can also be restored from the filesystem:
```python
>>> from datafiles import Missing
>>> item = InventoryItem("widget", Missing)
>>> item.unit_price
2.5
>>> item.quantity_on_hand
100
```
## Installation
Because datafiles relies on dataclasses and type annotations, Python 3.7+ is required. Install this library directly into an activated virtual environment:
```
$ pip install datafiles
```
or add it to your [Poetry](https://poetry.eustace.io/) project:
```
$ poetry add datafiles
```
## Documentation
To see additional synchronization and formatting options, please consult the [full documentation](https://datafiles.readthedocs.io).