# FFmpeg Quality Metrics
[](https://badge.fury.io/py/ffmpeg_quality_metrics)
Simple script for calculating quality metrics with FFmpeg.
Currently supports PSNR, SSIM and VMAF. It will output:
- the per-frame metrics
- metrics for each component (Y, U, V)
- global statistics (min/max/average/standard deviation)
Author: Werner Robitza <werner.robitza@gmail.com>
Contents:
- [Requirements](#requirements)
- [Installation](#installation)
- [Usage](#usage)
- [Running with Docker](#running-with-docker)
- [Output](#output)
- [License](#license)
------
## Requirements
- Python 3.6 or higher
- FFmpeg:
- download a static build from [their website](http://ffmpeg.org/download.html))
- put the `ffmpeg` executable in your `$PATH`
Optionally, you may install FFmpeg with `libvmaf` support to run VMAF score calculation. Under Linux and macOS, this can be done with the following steps:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"
brew tap homebrew-ffmpeg/ffmpeg
brew install homebrew-ffmpeg/ffmpeg/ffmpeg --with-libvmaf
```
This may take a while.
Under Windows, you have to install ffmpeg and VMAF manually, or using [helper scripts](https://github.com/rdp/ffmpeg-windows-build-helpers).
## Installation
pip3 install ffmpeg_quality_metrics
Or clone this repository, then run the tool with `python3 -m ffmpeg_quality_metrics`
## Usage
In the simplest case, if you have a distorted (encoded, maybe scaled) version and the reference:
```
ffmpeg_quality_metrics distorted.mp4 reference.avi
```
The distorted file will be automatically scaled to the resolution of the reference.
### Extended Options
See `ffmpeg_quality_metrics -h`:
```
usage: [-h] [-n] [-v] [-ev] [-m MODEL_PATH] [-p] [-dp]
[-s {fast_bilinear,bilinear,bicubic,experimental,neighbor,area,bicublin,gauss,sinc,lanczos,spline}]
[-of {json,csv}] [-r FRAMERATE] [-t THREADS]
dist ref
positional arguments:
dist input file, distorted
ref input file, reference
optional arguments:
-h, --help show this help message and exit
-n, --dry-run Do not run command, just show what would be done
(default: False)
-v, --verbose Show verbose output (default: False)
-ev, --enable-vmaf Enable VMAF computation; calculates VMAF as well as
SSIM and PSNR (default: False)
-m MODEL_PATH, --model-path MODEL_PATH
Set path to VMAF model file (.pkl) (default: None)
-p, --phone-model Enable VMAF phone model (default: False)
-dp, --disable-psnr-ssim
Disable PSNR/SSIM computation. Use VMAF to get YUV
estimate. (default: False)
-s {fast_bilinear,bilinear,bicubic,experimental,neighbor,area,bicublin,gauss,sinc,lanczos,spline}, --scaling-algorithm {fast_bilinear,bilinear,bicubic,experimental,neighbor,area,bicublin,gauss,sinc,lanczos,spline}
Scaling algorithm for ffmpeg (default: bicubic)
-of {json,csv}, --output-format {json,csv}
output in which format (default: json)
-r FRAMERATE, --framerate FRAMERATE
force an input framerate (default: None)
-t THREADS, --threads THREADS
Number of threads to do the calculations (default: 0)
```
### Specifying VMAF Model
If you are running Windows, or if you want to specify a different VMAF model file than the default, you need both a `.pkl` and a `.pkl.model` file in the same path for VMAF to be able to load the model.
Use the `-m/--model-path` option to set the path to the model file, by pointing it to the `.pkl` file (not the `.pkl.model` file!).
For example, if you have the model files saved at:
```
/usr/local/opt/libvmaf/share/model/vmaf_v0.6.1.pkl
/usr/local/opt/libvmaf/share/model/vmaf_v0.6.1.pkl.model
```
Run the command with:
```
ffmpeg_quality_metrics dist.mkv ref.mkv -m /usr/local/opt/libvmaf/share/model/vmaf_v0.6.1.pkl
```
## Running with Docker
If you don't want to deal with dependencies, build the image with Docker:
```
docker build -t ffmpeg_quality_metrics .
```
This installs `ffmpeg` with all dependencies. You can then run the container, which basically calls the Python script. To help you with mounting the volumes (since your videos are not stored in the container), you can run a helper script:
```
./docker_run.sh
```
Check the output of the above command for more help.
## Output
JSON or CSV, including individual fields for Y, U, V, and averages, as well as frame numbers.
JSON example:
```
➜ ffmpeg_quality_metrics test/dist-854x480.mkv test/ref-1280x720.mkv --enable-vmaf
{
"vmaf": [
{
"adm2": 0.69908,
"motion2": 0.0,
"ms_ssim": 0.89698,
"psnr": 18.58731,
"ssim": 0.92415,
"vif_scale0": 0.53962,
"vif_scale1": 0.71805,
"vif_scale2": 0.75205,
"vif_scale3": 0.77367,
"vmaf": 14.07074,
"n": 1
},
{
"adm2": 0.69846,
"motion2": 0.35975,
"ms_ssim": 0.89806,
"psnr": 18.60299,
"ssim": 0.9247,
"vif_scale0": 0.54025,
"vif_scale1": 0.71961,
"vif_scale2": 0.75369,
"vif_scale3": 0.77607,
"vmaf": 14.48034,
"n": 2
},
{
"adm2": 0.69715,
"motion2": 0.35975,
"ms_ssim": 0.89879,
"psnr": 18.6131,
"ssim": 0.92466,
"vif_scale0": 0.5391,
"vif_scale1": 0.71869,
"vif_scale2": 0.75344,
"vif_scale3": 0.77616,
"vmaf": 14.27326,
"n": 3
}
],
"psnr": [
{
"n": 1,
"mse_avg": 536.71,
"mse_y": 900.22,
"mse_u": 234.48,
"mse_v": 475.43,
"psnr_avg": 20.83,
"psnr_y": 18.59,
"psnr_u": 24.43,
"psnr_v": 21.36
},
{
"n": 2,
"mse_avg": 535.29,
"mse_y": 896.98,
"mse_u": 239.4,
"mse_v": 469.49,
"psnr_avg": 20.84,
"psnr_y": 18.6,
"psnr_u": 24.34,
"psnr_v": 21.41
},
{
"n": 3,
"mse_avg": 535.04,
"mse_y": 894.89,
"mse_u": 245.8,
"mse_v": 464.43,
"psnr_avg": 20.85,
"psnr_y": 18.61,
"psnr_u": 24.22,
"psnr_v": 21.46
}
],
"ssim": [
{
"n": 1,
"ssim_y": 0.934,
"ssim_u": 0.96,
"ssim_v": 0.942,
"ssim_avg": 0.945
},
{
"n": 2,
"ssim_y": 0.934,
"ssim_u": 0.96,
"ssim_v": 0.943,
"ssim_avg": 0.946
},
{
"n": 3,
"ssim_y": 0.934,
"ssim_u": 0.959,
"ssim_v": 0.943,
"ssim_avg": 0.945
}
],
"global": {
"ssim": {
"average": 0.9453333333333332,
"stdev": 0.00047140452079103207,
"min": 0.945,
"max": 0.946
},
"psnr": {
"average": 20.84,
"stdev": 0.008164965809278536,
"min": 20.83,
"max": 20.85
},
"vmaf": {
"average": 14.27478,
"stdev": 0.16722195390159322,
"min": 14.07074,
"max": 14.48034
}
},
"input_file_dist": "test/dist-854x480.mkv",
"input_file_ref": "test/ref-1280x720.mkv"
}
```
CSV example:
```
➜ ffmpeg_quality_metrics test/dist-854x480.mkv test/ref-1280x720.mkv --enable-vmaf -of csv
n,adm2,motion2,ms_ssim,psnr,ssim,vif_

挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
最新资源
- 【毕业设计】Python的Django-html人信息管理系统及安全策略分析系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- PLC西门子杯比赛:三部十层电梯博图v15.1智能程序开发及其WinCC界面展示,PLC西门子杯比赛:三部十层电梯博图v15.1程序设计与WinCC界面展示,PLC西门子杯比赛,三部十层电梯博图v15
- 【毕业设计】微信小程序,小程序商城,商城,springboot框架,vue管理系统,java后台【源码+论文+答辩ppt+开题报告+任务书】.zip
- 【毕业设计】学生成绩管理系统(springboot+layui+thymeleaf)【源码+论文+答辩ppt+开题报告+任务书】.zip
- 【毕业设计】Python的Django-html深度学习文本相似度检测系统(bert)源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 基于STM32的智能医疗监护系统设计
- 【毕业设计】学生管理系统(vue + springboot)【源码+论文+答辩ppt+开题报告+任务书】.zip
- 【毕业设计】springboot酒店预订管理管理 【源码+论文+答辩ppt+开题报告+任务书】.zip
- 【毕业设计】Python的Django-html深度学习的web端多格式纠错系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- springBoot时基于springBoot开发的一套轻量级的系统脚手架,可以以此形成一套属于自己的系统后台 ,自动生成前后台基本代码
- 【毕业设计】Python的Django-html图像取证技术研究与实现系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】Python的Django-html手写数字识别系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】Python的Django-html图像去雾算法研究系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- Labview与基恩士PLC串口通信详解:源码开放,多种数据格式批量读写,无插件完胜OPC,Labview与基恩士PLC串口通信:源码开放,多类型数据批量读写,无插件胜OPC,Labview与基恩士P
- 【毕业设计】Python的Django-html图像信息隐藏技术设计源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 机器学习课程设计基于Python的返乡发展人员预测项目源代码+训练数据
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


