import datetime as dt
import blpapi
import logging
from .BbgRefDataService import BbgRefDataService
import pandas as pd
import numpy as np
from . import BbgLogger
import pytz
from tzlocal import get_localzone
logger = BbgLogger.logger
SECURITY_DATA = blpapi.Name("securityData")
SECURITY = blpapi.Name("security")
FIELD_DATA = blpapi.Name("fieldData")
FIELD_EXCEPTIONS = blpapi.Name("fieldExceptions")
FIELD_ID = blpapi.Name("fieldId")
ERROR_INFO = blpapi.Name("errorInfo")
BAR_DATA = blpapi.Name("barData")
BAR_TICK_DATA = blpapi.Name("barTickData")
OPEN = blpapi.Name("open")
HIGH = blpapi.Name("high")
LOW = blpapi.Name("low")
CLOSE = blpapi.Name("close")
VOLUME = blpapi.Name("volume")
NUM_EVENTS = blpapi.Name("numEvents")
TIME = blpapi.Name("time")
class BbgIntradayBar(BbgRefDataService):
def __init__(self, securities, startTime, endTime, event = "TRADE", barInterval = 60, timeZone = str(get_localzone()), gapFillInitialBar = False, adjustmentSplit = True, adjustmentAbnormal = False, adjustmentNormal = False, adjustmentFollowDPDF = True):
'''
Bloomberg Intraday Bar query object. Allows user to input a list of securities retrieval over a specified time period subject to the usual constraints that apply to Bloomberg Intraday Bar data retrieval.
Parameters
----------
fields : tuple, list, or ndarray
The list of fields to be retrieved, field names and data types can be determined by typing FLDS <GO> and using the search box.
securities : tuple, list, or ndarray
List of Bloomberg tickers to retrieve data for. If one item is passed this can be input as a string, otherwise inputs must be passed as a list or array-like.
startTime : datetime.datetime
The start date and time at which to retrieving data from. Must be passed as a datetime.
endTime : datetime.datetime
The end date and time at which to retrieving data from. Must be passed as a datetime.
event : string
Defines the market event supplied for an intraday request. Could be TRADE, BID or ASK. If no event is passed, will default to TRADE.
barInterval : integer
Sets the length of each time-bar in the response. Entered as a whole number (between 1 and 1,440 minutes). If omitted, the request will default to 60 minutes. One minute is the lowest possible granularity.
timeZone : string
Timezone for the request based on the pytz package timezone names. If no timezone is passed, will default to current system timezone.
gapFillInitialBar : bool
Adjust historical pricing to reflect: Special Cash, Liquidation, Capital Gains, Long-Term Capital Gains, Short-Term Capital Gains, Memorial, Return of Capital, Rights Redemption, Miscellaneous, Return Premium, Preferred Rights Redemption, Proceeds/Rights, Proceeds/Shares, Proceeds/Warrants
adjustmentSplit : bool
Adjust historical pricing and/or volume to reflect: Spin-Offs, Stock Splits/Consolidations, Stock Dividend/Bonus, Rights Offerings/Entitlement. If not set, will be set to True.
adjustmentAbnormal : bool
Adjust historical pricing to reflect: Special Cash, Liquidation, Capital Gains, Long-Term Capital Gains, Short-Term Capital Gains, Memorial, Return of Capital, Rights Redemption, Miscellaneous, Return Premium, Preferred Rights Redemption, Proceeds/Rights, Proceeds/Shares, Proceeds/Warrants. If not set, will be set to False.
adjustmentNormal : bool
Adjust historical pricing to reflect: Regular Cash, Interim, 1st Interim, 2nd Interim, 3rd Interim, 4th Interim, 5th Interim, Income, Estimated, Partnership Distribution, Final, Interest on Capital, Distribution, Prorated. If not set, will be set to False.
adjustmentFollowDPDF : bool
Setting to True will follow the DPDF <GO> Terminal function. True is the default setting for this option. If not set, will be set to True.
See Also
--------
BbgIntradayBar.constructDf : Constructor method, retrieves data associated with a BbgDataPoint query object and generates a dataframe from it.
BbgDataPoint : Retrieve single point static, calculated or other reference data.
BbgIntradayTick : Retrieve historic tick-level data for a given security.
BbgIntradayBar : Retrieve historic bar level data for a given security (open, high, low and close) for a specified time interval given in minutes.
Examples
--------
Retrieve open, high, low, close, volume, number of events and value data for a basket of securities between two datetimes.
>>> import datetime as dt
>>> import pandas as pd
>>> import BloombergDataModule as bbg
>>> futHist = bbg.BbgIntradayBar(securities = ["YMH0 Comdty", "XMH0 Comdty"], startTime = dt.datetime(2020, 1, 31, 9, 0, 0), endTime = dt.datetime(2020, 1, 31, 12, 0, 0), barInterval = 5)
>>> futHist.constructDf().head()
Field open high low close volume numEvents value
Security time
YMH0 Comdty 2020-01-31 09:10:00+11:00 99.37 99.375 99.37 99.375 149 3 14806.3
2020-01-31 09:15:00+11:00 99.375 99.38 99.375 99.38 1749 13 173807
2020-01-31 09:20:00+11:00 99.38 99.38 99.38 99.38 6 6 596.28
2020-01-31 09:25:00+11:00 99.38 99.38 99.375 99.38 2170 35 215655
2020-01-31 09:30:00+11:00 99.38 99.38 99.375 99.38 93 3 9241.89
'''
self.securities = list(securities) if type(securities) is not list else securities
self.startTime = startTime
self.endTime = endTime
self.event = event
self.barInterval = barInterval
self.timeZone = timeZone
self.gapFillInitialBar = gapFillInitialBar
self.adjustmentSplit = adjustmentSplit
self.adjustmentAbnormal = adjustmentAbnormal
self.adjustmentNormal = adjustmentNormal
self.adjustmentFollowDPDF = adjustmentFollowDPDF
def constructDf(self):
'''
The constructDf method retrieves data associated with a BbgIntradayBar query object and generates a dataframe from it.
Parameters
----------
None
Returns
-------
table : DataFrame
Raises
------
ValueError:
Blah blah blah
See Also
--------
BbgDataHistory.constructDf : retrieves static history data and constructs a DataFrame from it. It has more customisability with respect to overrides
BbgIntradayTick.constructDf: retrieves intraday (or multi-day) tick level data and constructs a dataframe from it. It has applications in more data intensive and granular analysis
BbgDataPoint.constructDf: retrieves intraday (or multi-day) bar level (open-high-low-close) data and constructs a dataframe from it. It is for use in more data intensive and granular analysis.constructDf. The bar interval frequency can be specified in minutes to optimise for efficiency and speed.
Notes
-----
Blah blah blah
Examples
--------
Retrieve open, high, low, close, volume, number of events and value data for a basket of securities between two datetimes.
>>> import datetime as dt
>>> import pandas as pd
>>> import BloombergDataModule as bbg
>>> futHist = bbg.BbgIntradayBar(securities = ["YMH0 Comdty", "XMH0 Comdty"], startTime = dt.datetime(2020, 1, 31, 9, 0, 0), endTime = dt.datetime(2020, 1, 31, 12, 0, 0), barInterval = 5)
>>> futHist.constructDf().head()
Field open high low close volume numEvent
没有合适的资源?快使用搜索试试~ 我知道了~
PyPI 官网下载 | BloombergData-0.4.tar.gz
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 32 浏览量
2022-01-09
14:09:32
上传
评论
收藏 10KB GZ 举报
温馨提示
资源来自pypi官网。 资源全名:BloombergData-0.4.tar.gz
资源推荐
资源详情
资源评论
收起资源包目录
BloombergData-0.4.tar.gz (12个子文件)
BloombergData-0.4
setup.cfg 61B
PKG-INFO 932B
BloombergData
BbgDataHistory.py 9KB
BbgLogger.py 733B
BbgDataService.py 7KB
BbgSession.py 4KB
BbgDataPoint.py 8KB
BbgRefDataService.py 6KB
BbgIntradayTick.py 2KB
__init__.py 305B
bbgIntradayBar.py 10KB
setup.py 1KB
共 12 条
- 1
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功