<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.producthunt.com/@glenn_jocher">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) â NEW
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于YOLOv5的水表读数系统源码+训练好的模型+数据集(毕业设计&期末大作业),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。 基于YOLOv5的水表读数系统源码+训练好的模型+数据集(毕业设计&期末大作业),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。 基于YOLOv5的水表读数系统源码+训练好的模型+数据集(毕业设计&期末大作业),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。 基于YOLOv5的水表读数系统源码+训练好的模型+数据集(毕业设计&期末大作业),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。基于YOLOv5的水表读数系统源码+训练好的模型+数据集(毕业设计&期末大作业),含
资源推荐
资源详情
资源评论
收起资源包目录
基于YOLOv5的水表读数系统源码+训练好的模型+数据集(毕业设计&期末大作业) (217个子文件)
setup.cfg 2KB
openh264-1.8.0-win64.dll 806KB
Dockerfile 2KB
Dockerfile 821B
Dockerfile 821B
.dockerignore 4KB
.gitattributes 75B
.gitattributes 55B
.gitignore 4KB
.gitignore 176B
wmreading_system.iml 486B
tutorial.ipynb 55KB
test_ocr_biao.ipynb 6KB
bus.jpg 476KB
bus.jpg 203KB
zidane.jpg 165KB
zidane.jpg 82KB
LICENSE 34KB
README.md 15KB
README.md 11KB
CODE_OF_CONDUCT.md 5KB
CONTRIBUTING.md 5KB
README.md 2KB
PULL_REQUEST_TEMPLATE.md 693B
README.md 560B
毕设工作记录2.md 554B
SECURITY.md 359B
README-checkpoint.md 286B
demo.mp4 14.31MB
test.mp4 6.87MB
10s.mp4 2.63MB
test1.mp4 846KB
result3.png 1.14MB
result1.png 998KB
video.png 775KB
image.png 667KB
result2.png 631KB
result4.png 548KB
result.png 528KB
result-checkpoint.png 528KB
bestexp7.pt 88.43MB
yolov5s.pt 14.11MB
best.pt 13.75MB
datasets.py 46KB
datasets.py 44KB
general.py 39KB
train.py 34KB
common.py 33KB
export.py 28KB
wandb_utils.py 27KB
general.py 25KB
tf.py 21KB
plots.py 21KB
val.py 19KB
plots.py 19KB
common.py 17KB
main.py 16KB
wandb_utils.py 16KB
yolo.py 15KB
yolo.py 15KB
detect.py 15KB
deep_list.py 14KB
metrics.py 14KB
torch_utils.py 13KB
detect_yolov5.py 13KB
torch_utils.py 12KB
augmentations.py 12KB
detect_sort.py 11KB
loss.py 10KB
loss.py 9KB
app.py 9KB
metrics.py 9KB
__init__.py 8KB
autoanchor.py 7KB
autoanchor.py 7KB
hubconf.py 6KB
downloads.py 6KB
benchmarks.py 6KB
experimental.py 5KB
google_utils.py 5KB
experimental.py 5KB
water_meter_app.py 4KB
export.py 4KB
water_meter_app-checkpoint.py 3KB
activations.py 3KB
callbacks.py 2KB
activations.py 2KB
autobatch.py 2KB
calculate_IoU_polygon.py 2KB
restapi.py 1KB
sweep.py 1KB
resume.py 1KB
resume.py 1KB
__init__.py 1KB
log_dataset.py 1KB
log_dataset.py 819B
calculate_IoU.py 796B
example_request.py 368B
__init__.py 0B
__init__.py 0B
共 217 条
- 1
- 2
- 3
资源评论
王二空间
- 粉丝: 7530
- 资源: 2104
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 永磁同步电机直接转矩控制DTC仿真模型,三相PMSM直接转矩控制matlab仿真算法,基于matlab simulink搭建 附参考资料,简单电子资料
- 2025年春节烟花特效html
- Python_利用AI大模型一键生成高清短视频 Generate short videos with one clic.zip
- Python_连接到任何数据源,轻松可视化仪表板和共享您的数据.zip
- Python_利用GDB开发和逆向工程变得容易.zip
- 永磁同步电机PMSMsimulink仿真,模型参考自适应方法在线辩识转动惯量,可选变增益,纯手工搭建,附参考资料
- Python_领先的ETL ELT数据管道数据集成平台,从api数据库文件到数据仓库、数据湖、数据湖,包括自托管和云托.zip
- Python_令人敬畏的开源启动替代知名SaaS产品列表.zip
- Python_流氓接入点框架.zip
- Python_马尔:口齿不清.zip
- Python_免费超快副驾驶替代Vim和Neovim.zip
- Python_麦考夫核心麦考夫人工智能平台.zip
- Python_每个人的开源机器学习框架.zip
- Python_免费的计算机编程类中文书籍欢迎投稿.zip
- 光伏逆变器仿真模型,boost加NPC拓扑结构,基于MATLAB Simulink建模仿真 具备中点平衡SVPWM控制,正负序分离控制,可以进行功率调度仿真 仿真模型使用MATLAB 2017b搭
- Python_免费和开源企业资源规划ERP.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功