<div align="center">
<p>
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/master/yolov5/v70/splash.png"></a>
</p>
English | [ç®ä½ä¸æ](.github/README_cn.md)
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
<p>
YOLOv5 ð is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
<br><br>
To request a commercial license please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
<br><br>
</p>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">Segmentation â NEW</div>
<div align="center">
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://user-images.githubusercontent.com/26833433/203348073-9b85607b-03e2-48e1-a6ba-fe1c1c31749c.png"></a>
</div>
Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
<details>
<summary>Segmentation Checkpoints</summary>
<br>
We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|----------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------|------------------------|
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values ind
没有合适的资源?快使用搜索试试~ 我知道了~
基于yolov5和django框架的web端人脸识别并打码系统.zip
共2000个文件
js:641个
svg:618个
css:242个
4 下载量 12 浏览量
2024-04-26
18:58:27
上传
评论
收藏 53.92MB ZIP 举报
温馨提示
django基于yolov5和django框架的web端人脸识别并打码系统.zip 基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip基于yolov5和django框架的web端人脸识别并打码系统.zip
资源推荐
资源详情
资源评论
收起资源包目录
基于yolov5和django框架的web端人脸识别并打码系统.zip (2000个子文件)
setup.cfg 2KB
app.css 1.23MB
quick-website.css 444KB
bootstrap.css 193KB
bootstrap.min.css 156KB
bootstrap.css 143KB
bootstrap.min.css 119KB
animate.css 76KB
all.css 69KB
fontawesome.css 67KB
bootstrap-grid.css 66KB
animate.min.css 57KB
all.min.css 56KB
fontawesome.min.css 54KB
bootstrap-grid.min.css 50KB
v4-shims.css 40KB
fullcalendar.css 33KB
sweetalert2.css 29KB
v4-shims.min.css 26KB
bootstrap-theme.css 25KB
quill.bubble.css 25KB
quill.snow.css 24KB
sweetalert2.min.css 24KB
bootstrap-theme.min.css 23KB
swiper.css 22KB
jquery.scrollbar.css 22KB
airbnb.css 21KB
swiper.min.css 19KB
material_green.css 19KB
confetti.css 19KB
material_red.css 19KB
material_orange.css 19KB
material_blue.css 19KB
light.css 19KB
dark.css 18KB
flatpickr.css 18KB
jquery.fancybox.css 17KB
select2.css 17KB
docs.css 16KB
fullcalendar.min.css 16KB
flatpickr.min.css 16KB
select2.min.css 15KB
jquery.fancybox.min.css 12KB
dropzone.css 12KB
apexcharts.css 12KB
theme.css 10KB
dropzone.min.css 9KB
quill.core.css 9KB
svg-with-js.css 8KB
svg-with-js.min.css 6KB
fullcalendar.print.css 5KB
nouislider.css 5KB
bootstrap-reboot.css 5KB
nouislider.min.css 4KB
bootstrap-reboot.min.css 4KB
nord.css 3KB
night-owl.css 3KB
purebasic.css 2KB
fullcalendar.print.min.css 2KB
grayscale.css 2KB
style.css 2KB
atom-one-dark-reasonable.css 2KB
a11y-light.css 1KB
a11y-dark.css 1KB
gruvbox-light.css 1KB
gruvbox-dark.css 1KB
vs2015.css 1KB
shades-of-purple.css 1KB
isbl-editor-dark.css 1KB
isbl-editor-light.css 1KB
hybrid.css 1KB
bootstrap-tagsinput.css 1KB
atelier-estuary-light.css 1KB
atelier-savanna-light.css 1KB
atelier-plateau-light.css 1KB
atelier-estuary-dark.css 1KB
atelier-savanna-dark.css 1KB
atelier-plateau-dark.css 1KB
atelier-cave-light.css 1KB
agate.css 1KB
atelier-cave-dark.css 1KB
atom-one-light.css 1KB
atom-one-dark.css 1KB
routeros.css 1KB
xcode.css 1KB
railscasts.css 1KB
an-old-hope.css 1KB
sunburst.css 1KB
idea.css 1KB
default.css 1KB
tomorrow-night-blue.css 1KB
atelier-sulphurpool-light.css 1KB
atelier-sulphurpool-dark.css 1KB
tomorrow-night.css 1KB
github.css 1KB
solarized-dark.css 1KB
solarized-light.css 1KB
docco.css 1KB
atelier-lakeside-light.css 1KB
atelier-lakeside-dark.css 1KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
王二空间
- 粉丝: 7535
- 资源: 2106
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- ouc2024秋攻防先导作业
- ouc2024秋攻防先导作业
- 算数优化算法AOA对BP的权值和阈值做优化,建立多个特征变量输入,单个因变量输出的拟合预测建模 程序内注释详细,可学习性强 直接替数据就可以用,可以直接导入excel数据 程序语言为matlab
- 精确符合规范反应谱的人工合成地震波
- LINUX最新版本算法库5.0.15(1).zip
- Matlab基于量子遗传算法的函数寻优方法 量子遗传算法QGA是量子计算与遗传算法相结合的产物,是一种新发展起来的概率进化算法 代码可正常运行
- 驾校预约学习系统 源码+数据库+论文(JAVA+SpringBoot+Vue.JS+MySQL).zip
- 基于ssm+mysql图书仓储管理系统源码数据库.docx
- springboot3+vue3
- CREO7装配与产品设计-钟日铭-配套操作文件
- 基于SpringBoot+Vue.JS开发的校园志愿者管理系统 JAVA毕业设计 源码+数据库+论文(有项目截图)+启动教程
- Linux操作系统课程设计实验报告-涵盖多线程同步、内核模块编程、进程树打印、系统调用添加及块设备驱动实现
- 素材网站解析源码支持21个网站解析可搭建运营
- 285个地级市灯光数据和雾霾数据.zip
- 全桥谐振和变压器计算 看截图,知识文档,含有LLC谐振半桥计算,全桥LLC谐振和变压器的计算,描述详细使用,表格都有引用公式依据,便于理解
- vlan dnsp 111
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功