<?xml version="1.0"?>
<!--
Stump-based 20x20 gentle adaboost frontal face detector.
This detector uses tree of stage classifiers instead of a cascade
Created by Rainer Lienhart.
////////////////////////////////////////////////////////////////////////////////////////
IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
Intel License Agreement
For Open Source Computer Vision Library
Copyright (C) 2000, Intel Corporation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistribution's of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistribution's in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* The name of Intel Corporation may not be used to endorse or promote products
derived from this software without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall the Intel Corporation or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
-->
<opencv_storage>
<cascade type_id="opencv-cascade-classifier"><stageType>BOOST</stageType>
<featureType>HAAR</featureType>
<height>20</height>
<width>20</width>
<stageParams>
<maxWeakCount>406</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>0</maxCatCount></featureParams>
<stageNum>47</stageNum>
<stages>
<_>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-1.3442519903182983e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 0 3.7895569112151861e-03</internalNodes>
<leafValues>
-9.2945802211761475e-01 6.4119851589202881e-01</leafValues></_>
<_>
<internalNodes>
0 -1 1 1.2098110280930996e-02</internalNodes>
<leafValues>
-7.1810090541839600e-01 4.7141009569168091e-01</leafValues></_>
<_>
<internalNodes>
0 -1 2 1.2138449819758534e-03</internalNodes>
<leafValues>
-7.2831612825393677e-01 3.0330690741539001e-01</leafValues></_></weakClassifiers></_>
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>-1.6378560066223145e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 3 8.7510552257299423e-03</internalNodes>
<leafValues>
-8.5947072505950928e-01 3.6881381273269653e-01</leafValues></_>
<_>
<internalNodes>
0 -1 4 2.1986700594425201e-02</internalNodes>
<leafValues>
-6.0180151462554932e-01 3.2897830009460449e-01</leafValues></_>
<_>
<internalNodes>
0 -1 5 6.4913398819044232e-04</internalNodes>
<leafValues>
-7.9431951045989990e-01 2.5493299961090088e-01</leafValues></_>
<_>
<internalNodes>
0 -1 6 -1.0192029876634479e-03</internalNodes>
<leafValues>
2.2729329764842987e-01 -6.3627982139587402e-01</leafValues></_>
<_>
<internalNodes>
0 -1 7 1.3674780493602157e-03</internalNodes>
<leafValues>
-6.0014182329177856e-01 2.4118369817733765e-01</leafValues></_>
<_>
<internalNodes>
0 -1 8 1.0245250305160880e-03</internalNodes>
<leafValues>
-5.8542472124099731e-01 1.2550109624862671e-01</leafValues></_>
<_>
<internalNodes>
0 -1 9 1.8465859815478325e-02</internalNodes>
<leafValues>
1.9563560187816620e-01 -6.7630231380462646e-01</leafValues></_>
<_>
<internalNodes>
0 -1 10 4.0901508182287216e-03</internalNodes>
<leafValues>
-4.4916498661041260e-01 2.6677688956260681e-01</leafValues></_>
<_>
<internalNodes>
0 -1 11 1.1358099989593029e-02</internalNodes>
<leafValues>
1.8783229589462280e-01 -6.1379361152648926e-01</leafValues></_></weakClassifiers></_>
<_>
<maxWeakCount>16</maxWeakCount>
<stageThreshold>-1.7317579984664917e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 12 -1.1588949710130692e-02</internalNodes>
<leafValues>
3.4567040205001831e-01 -7.6478981971740723e-01</leafValues></_>
<_>
<internalNodes>
0 -1 13 5.1809530705213547e-03</internalNodes>
<leafValues>
2.4104920029640198e-01 -6.9623559713363647e-01</leafValues></_>
<_>
<internalNodes>
0 -1 14 2.1468549966812134e-03</internalNodes>
<leafValues>
-8.0553662776947021e-01 1.9838610291481018e-01</leafValues></_>
<_>
<internalNodes>
0 -1 15 -3.6556499544531107e-03</internalNodes>
<leafValues>
-7.1833139657974243e-01 1.2305679917335510e-01</leafValues></_>
<_>
<internalNodes>
0 -1 16 -1.9701640121638775e-03</internalNodes>
<leafValues>
2.2777689993381500e-01 -4.7520169615745544e-01</leafValues></_>
<_>
<internalNodes>
0 -1 17 -3.3645539078861475e-03</internalNodes>
<leafValues>
-4.6095049381256104e-01 2.0394650101661682e-01</leafValues></_>
<_>
<internalNodes>
0 -1 18 -7.4126059189438820e-05</internalNodes>
<leafValues>
1.8213239312171936e-01 -4.7829270362854004e-01</leafValues></_>
<_>
<internalNodes>
0 -1 19 -1.7571110278367996e-02</internalNodes>
<leafValues>
-7.1737551689147949e-01 1.1311130225658417e-01</leafValues></_>
<_>
<internalNodes>
0 -1 20 6.3840472139418125e-03</internalNodes>
<leafValues>
-4.0205681324005127e-01 2.0730289816856384e-01</leafValues></_>
<_>
<internalNodes>
0 -1 21 -1.4723399654030800e-02</internalNodes>
<leafValues>
-6.7558771371841431e-01 6.8973086774349213e-02</leafValues></_>
<_>
<internalNodes>
0 -1 22 -5.2889222279191017e-03</internalNodes>
<leafValues>
-6.2105172872543335e-01 1.3349360227584839e-01</leafValues></_>
<_>
<internalNodes>
0 -1 23 2.7743630111217499e-02</internalNodes>
<leafValues>
1.1760850250720978e-01 -5.4641121625900269e-01</leafValues></_>
<_>
<internalNodes>
0 -1 24 3.9427559822797775e-02</internalNodes>
<leafValues>
-2.1134279668331146e-01 3.9452999830245972e-01</leafValues></_>
<_>
<internalNodes>
0 -1 25 8.6949411779642105e-03</internalNodes>
<leafValues>
没有合适的资源?快使用搜索试试~ 我知道了~
haarcascades.rar
共17个文件
xml:17个
需积分: 11 4 下载量 83 浏览量
2020-04-08
20:08:31
上传
评论
收藏 1.33MB RAR 举报
温馨提示
压缩包里包含Haar级联分类器的相关xml文件。文件内容如下: haarcascade_eye.xml haarcascade_eye_tree_eyeglasses.xml haarcascade_frontalcatface.xml haarcascade_frontalcatface_extended.xml haarcascade_frontalface_alt.xml haarcascade_frontalface_alt2.xml haarcascade_frontalface_alt_tree.xml haarcascade_frontalface_default.xml haarcascade_fullbody.xml haarcascade_lefteye_2splits.xml haarcascade_licence_plate_rus_16stages.xml haarcascade_lowerbody.xml haarcascade_profileface.xml haarcascade_righteye_2splits.xml haarcascade_russian_plate_number.xml haarcascade_smile.xml haarcascade_upperbody.xml
资源推荐
资源详情
资源评论
收起资源包目录
haarcascades.rar (17个子文件)
haarcascade_smile.xml 184KB
haarcascade_frontalface_alt.xml 661KB
haarcascade_frontalface_default.xml 908KB
haarcascade_upperbody.xml 767KB
haarcascade_frontalcatface.xml 402KB
haarcascade_eye_tree_eyeglasses.xml 588KB
haarcascade_profileface.xml 809KB
haarcascade_licence_plate_rus_16stages.xml 47KB
haarcascade_righteye_2splits.xml 192KB
haarcascade_frontalface_alt_tree.xml 2.56MB
haarcascade_russian_plate_number.xml 74KB
haarcascade_frontalface_alt2.xml 528KB
haarcascade_lefteye_2splits.xml 191KB
haarcascade_fullbody.xml 466KB
haarcascade_lowerbody.xml 386KB
haarcascade_eye.xml 333KB
haarcascade_frontalcatface_extended.xml 374KB
共 17 条
- 1
资源评论
Mark_Lee131
- 粉丝: 231
- 资源: 5
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功