{"images": [{"id": 1, "file_name": "samples/CAM_FRONT/n015-2018-07-24-11-22-45+0800__CAM_FRONT__1532402927612460.jpg", "calib": [[1266.417236328125, 0.0, 816.2670288085938, 0.0], [0.0, 1266.417236328125, 491.507080078125, 0.0], [0.0, 0.0, 1.0, 0.0]], "video_id": 1, "frame_id": 1, "sensor_id": 1, "sample_token": "ca9a282c9e77460f8360f564131a8af5", "trans_matrix": [[-0.9401652123589339, -0.01558254807305889, -0.3403623916733912, 410.87244105365085], [0.33999683492988725, 0.022094631607521325, -0.9401669955341905, 1179.57081167158], [0.022170379061693356, -0.9996344389073828, -0.01547458699229483, 1.4936775157046178], [0.0, 0.0, 0.0, 1.0]], "velocity_trans_matrix": [[-0.9401652123589339, -0.01558254807305889, -0.3403623916733912, 0.0], [0.33999683492988725, 0.022094631607521325, -0.9401669955341905, 0.0], [0.022170379061693356, -0.9996344389073828, -0.01547458699229483, 0.0], [0.0, 0.0, 0.0, 1.0]], "width": 1600, "height": 900, "pose_record_trans": [411.4199861830012, 1181.197175631848, 0.0], "pose_record_rot": [0.5720063498929273, -0.0021434844534272707, 0.011564094980151613, -0.8201648693182716], "cs_record_trans": [1.70079118954, 0.0159456324149, 1.51095763913], "cs_record_rot": [0.4998015430569128, -0.5030316162024876, 0.4997798114386805, -0.49737083824542755], "radar_pc": [[14.403684043646441, 17.68929288665268, 16.571720518662367, 36.36568410867359, 42.700787133398954, 37.57424694374151, 38.35584120539206, 50.144817296162586, 49.9817193600166, 52.68841581100401, 57.43280793519046, 59.04284968609682, 65.37227012984519, 67.93065008819393, 70.11188692736452, 62.79659976040241, 71.47967971299458, 66.5137246998809, 66.7773618387376, 74.82419952614516, 76.38739564432396, 72.58041144537356, 74.79803614521109, 83.98064582167734, 81.48095667083678, 71.62093401747754, 146.80623309158005, -10.82795487438395, -14.164491889958665, -14.18498435096241, -14.12350696973245, -13.70503769264506, -18.404813541496132, -23.50793678548682, -28.29976468372717, -21.77908503222732, -22.778501144391953, -30.182472965506985, -31.22645249169592, -17.012790248856128, -31.43430327975405, -71.74956641616045, -84.27748007967395, -93.61555249805416, -73.51012406946285, -8.747152805021837, -14.398529975710254, -17.630814492484188, -71.52918614478203, -5.2544467384603735, -4.251772128402444, -4.449476992220077, 6.948967306411613, 8.349346606000308, -4.444888018454222, 6.953556280177469, -2.843362123811755, -5.443356067099374, 7.35623236129765, -4.640298393565433, -4.237622791104812, -6.438382384508388, -12.044106144275943, -11.843341011550107, -6.433410994742466, -6.0303525030927005, -13.036455560625456, -12.634926248845915, 7.771910058526188, 7.774969375585755, -20.236437907878432, 7.9807054212414466, -20.633761615564314, -24.03948965660931, -25.43757399247901, 5.189124769595768, 9.987966233580607, -9.411606488144217, -1.806270084006917, -5.40320254026591, 2.399456432721468, -3.2001482233848684, 18.192537169118637, -3.7986173267403816, 14.596369187232726, -17.200880233286018, 9.407471320895556, 5.409010156196082, -6.1909636285020175, 5.8135978277160705, -8.387134248139738, 11.613202304065053, 9.415119611720979, 6.2174211513659685, -25.99436015800678, 9.418943757133688, -7.374899280020515, -29.78937928892092, -20.576017018373584, -29.18364406502804, -1.1661179090266884, -31.384404615750736, -32.382872666219384, 0.4380849408093022, 6.638453129373065, -25.971797694236603, 17.43728036321844, -1.556939139732165, 49.7943771700218, -6.153869422375109, 38.222317743868615, 0.8487916113694506, 22.242624304183686, -33.56527960740974, -5.7450747053123, -11.544296288825151, -11.340855216005925, -9.735887116938244, 6.067518107030716, -11.52861729846822, -9.325180796711166, -8.314857908592277, 22.083542358644593], [0.7519756330404576, 0.7366183668391728, 0.6752312203947627, 0.8653196710696979, 0.7993540807008513, 0.907334457892566, 0.9119705441819063, 0.7110936866796895, 0.6175351418403696, 0.9392403388660184, 0.9126238676393104, 0.655352304042671, 0.8044033070303608, 0.815596128330796, 0.821565056217389, 0.6258465751443317, 0.8296782168755913, 0.6468993891847259, 0.6335291340685559, 0.8445385072650777, 0.8538106940352175, 0.6380822707141034, 0.6363022331371251, 0.9048242818445482, 0.9666586216334287, 0.7568414610662423, 0.7846554307656934, 0.7196209543846731, 0.707759712269191, 0.7104453000101322, 0.7023885370207493, 0.6739660611714341, 0.6822467640273844, 0.6377109284081133, 0.7108933237324706, 0.6224925487792072, 0.6213735843323196, 0.6934370647179958, 0.6453203284322503, 0.5790754161166787, 0.8310734413875374, 0.672177419202137, 0.5967575577083294, 0.6052622036322591, 0.9293224463535307, 0.7111165321812895, 0.7120118979831844, 0.712907192590816, 0.6697156277720052, 0.9597180412418053, 0.954850522095624, 0.9496506765874133, 0.9640700021865956, 0.9645967605038428, 0.939639840598425, 0.9540591661976072, 0.937858315443167, 0.9353307554470925, 0.9486083640467244, 0.9294345731177706, 0.9239837744812854, 0.9235135413150442, 0.9305831123435685, 0.9291090694455404, 0.9126684656786822, 0.9063834358142742, 0.9129262445476019, 0.909978157824442, 0.9147935248041731, 0.9081196314928812, 0.9059268484911833, 0.8958005124949394, 0.8996983379456248, 0.9089066144063422, 0.9033744385581526, 0.8747253238824682, 0.8818942993698541, 0.862200573277004, 0.8579095105836634, 0.8477359266206215, 0.8494789452208038, 0.843200746002094, 0.8798549997871777, 0.8392805041761223, 0.8680129361817249, 0.8312592711407601, 0.8387649618865292, 0.8315394493142889, 0.8202626423934842, 0.8219174763086327, 0.8097815732382545, 0.8283901194164086, 0.822080232586249, 0.8139639671494775, 0.8085224409080354, 0.8137378679361089, 0.7840581544005714, 0.7939832317738487, 0.7737286285461498, 0.7820529682668919, 0.770897964877782, 0.7815827421294459, 0.7772736609560629, 0.763276798050398, 0.768469817064692, 0.7593024767427705, 0.7814716151067461, 0.7504874374088203, 0.9064033942966422, 0.7393417148342041, 0.8342273140285291, 0.7403070228580242, 0.7744585736707289, 0.7377322134465523, 0.720543122082788, 0.7132362397911903, 0.7059225582139381, 0.696632912497415, 0.7044845595365661, 0.6790325574550542, 0.6736631210455795, 0.652110900444764, 0.6850008371086906], [-0.034792360488778096, 3.6914028230094007, 16.119888849776824, -19.539092364017268, -4.879551512846827, -27.96865987932627, -28.78663694224048, 14.555947485128735, 33.7644016121227, -31.913376781688964, -25.619723190665425, 27.55678904271367, -1.9944579396786022, -3.8531022314249923, -4.702920028763689, 34.2730768443997, -6.134381384055731, 30.587627630047276, 33.3823229413992, -8.611057653798609, -10.247013383265248, 33.450357576513994, 34.200110187201986, -19.421972671832663, -32.56836903652021, 8.866110069878161, 16.157966755941008, -0.2558093421542753, 1.6592305106078162, 1.0595865758860223, 2.8585183279282904, 9.247890262606376, 6.406757893948679, 15.186061554078087, -2.060185093712003, 18.929167575347225, 18.963316992096264, 1.4060959447069399, 11.847733088624171, 29.57250019037786, -29.368796063741357, -2.776794997346338, 11.259076954905888, 7.375743666220831, -60.14956188813323, 2.0744675930194636, 0.6666538869624347, -0.22347457390915815, -2.1839807225438626, 10.403899001289119, 11.80197680161917, 13.002345584273899, 12.180602234076874, 12.377928690853603, 15.402319936934365, 14.58057658673734, 16.199258852383853, 16.204219739151398, 15.979799206950696, 17.8026768495836, 19.201898517042505, 18.806100782695918, 15.816817353041918, 16.216431152453097, 21.40607379279832, 23.005292209460784, 19.81868327669433, 20.617910877336335, 24.17894947849996, 25.778933016049788, 19.832421115294007, 28.778519826473193, 21.23316921169018, 18.2396881070078, 19.242348825651483, 33.183815618240665, 32.57466299326714, 32.81167749875831, 35.59714811209706, 37.203998662755446, 38.58910278943436, 38.799782619313085, 34.958991470246524, 39.60092206941905, 36.965839336471156, 38.42650158591125, 42.775699287879746, 43.583326051415966, 43.60545924007239, 45.98253528409889, 45.60963585838627, 45.77147003232873
CenterFusion数据集nuScence-COCO格式
需积分: 0 105 浏览量
更新于2023-06-27
收藏 57.54MB ZIP 举报
**中心融合数据集(CenterFusion):nuScenes-COCO格式详解**
在计算机视觉领域,数据集是训练和评估算法性能的关键组成部分。CenterFusion数据集是针对自动驾驶场景设计的一个多模态感知任务的数据集,它结合了深度学习与高精度定位,旨在推动自动驾驶车辆对周围环境的理解。这个数据集的特别之处在于它采用了nuScenes数据集的场景,并将其转换为了COCO(Common Objects in Context)的标准格式,以便于更广泛的社区进行研究和开发。
**1. CenterFusion数据集**
CenterFusion是自动驾驶感知的一个先进框架,它主要处理的目标检测、实例分割和多目标追踪问题。这个框架强调了中心关键点的估计,从而提高了定位的准确性。CenterFusion数据集提供了丰富的训练和测试样本,涵盖了多种复杂的驾驶环境,包括城市街道、住宅区、行人过道等,确保模型能够应对各种实际驾驶情况。
**2. nuScenes数据集**
nuScenes是由NuTonomy公司创建的一个大规模的自动驾驶数据集,包含了来自多个传感器(如激光雷达、摄像头、毫米波雷达等)的多样化数据。数据集涵盖了1000个不同的驾驶场景,每个场景由连续的20秒片段组成,总共捕获了超过140万帧图像。nuScenes的特点在于其全面性和多样性,它包含6个不同的类别(汽车、卡车、公共汽车、摩托车、自行车、行人)以及详细的注释,为自动驾驶的研究提供了丰富的素材。
**3. COCO格式**
COCO(Common Objects in Context)是一种广泛使用的图像识别和分割数据集格式,它标准化了目标检测和实例分割任务的数据表示。COCO格式将每个目标视为一个独立的实例,用边界框和分割掩码来表示,便于模型训练和评估。将nuScenes数据集转化为COCO格式,意味着开发者可以利用现有的COCO工具链和模型直接应用于CenterFusion数据集,降低了算法开发的门槛。
**4. "annotations_3sweeps"子文件**
在提供的文件列表中,"annotations_3sweeps"很可能包含了多轮激光雷达扫描的注释数据。在自动驾驶中,"sweep"通常指的是激光雷达在一个时间间隔内进行的一次完整旋转,收集到的数据。通过合并3个sweep的扫描结果,可以增强物体的三维感知,提高定位精度。这些注释可能包括了每个物体的坐标、类别、尺寸和旋转信息,是训练CenterFusion模型的重要输入。
CenterFusion数据集nuScenes-COCO格式结合了nuScenes的丰富数据和COCO的标准化格式,为自动驾驶领域的研究者提供了一个强大的工具。利用"annotations_3sweeps"这样的子文件,研究人员可以训练出能精确感知和预测周围环境的模型,进一步推动自动驾驶技术的发展。
sky赞
- 粉丝: 2
- 资源: 1
最新资源
- 東耳篮球馆会员信息管理系统(编号:98721117).zip
- 房屋系统(编号:45266146).zip
- 大学生志愿者信息管理系统(编号:96654262).zip
- 房屋租赁系统(编号:49930163).zip
- 付费自习室管理系统(编号:46724236)(1).zip
- 学术论文撰写技巧:施一公提高英文论文写作能力的六点建议
- 科研真问题从何而来-中科院院士分享
- 通过matlab语言读取csv文件.zip
- 通过Django实现用户注册和登录的简单认证系统.zip
- 通过汇编语言计算两个整数和,将结果存储在另一个变量中.zip
- Aruba%20Instant%20On_2.3.0_apk-dl.com.apk.1.1
- Ruby参考手册中文CHM版最新版本
- RubyonRails字符串处理中文最新版本
- 基于 selenium 模拟微博登录爬虫资料齐全+详细文档+源码.zip
- 基于chromeDriver+selenium蓝桥杯题库爬虫资料齐全+详细文档+源码.zip
- 基于java+selenium爬虫资料齐全+详细文档+源码.zip