基于知识图谱的问答系统

-
细致介绍了一种基于知识图谱的问答系统,构建了一个推理模型,在建模问题回答过程中是十分有效的。
Why QA 知識 工場 QA application One of the most natural human-computer 吴)8 interaction Key components of Chatbot, which attracts wide research interests from industries · QA for A ? One of most important tasks to evaluate the machine intelligence: Turing test Important testbed of many al techniques such as machine learning, natural C language processing, machine cognition Turing test kw.fudan. edu. cn/ga Why KBQA? 知識 工場 More and more knowledge bases are created Google knowledge graph yago wordNet free base, probase, nell, cyc, dbpedia Large scale, clean data rue knowle?e 4 WolframAlpha name name Barack Obama Honolulu dob pob population 1961 390K eNam线 category category Politician City SUM可 ReadThe web eNTE:=:PubMEd category name CY线aG Michelle 酸忘, Person Obama / freebase UniProt BabelNet date person dob 1992 1964 WordNet I Text Runner/ 三 category category Reverb Event Person tSetse AWakiTakonomyi WiniNet A piece of knowledge base, which consist of The boost of knowledge bases triples such as (d, population, 390k) kw. fudan. edu. cn/ga How KB-based QA works? 知識 工場 Convert natural language questions into structured queries over knowledge bases How many people live in Honolulu? SPARQL name name Barack obama Honolulu Select ?number dob population 1961 390K Where i category Res Honolulu Politician category City dbo: population ?num category name Person Michelle Obama person date dob 1992 1964 category category SQL Event Person Select value Key: predicate inference From KB Where subject=d and predicate=population kw.fudan. edu. cn/qa Two challenges for predicate inference D 知識 工場 Question Representation Identify questions with the same semantics Distinguish questions with different intents Semantic matching Map the question representation to the predicate in the KB ° Vocabulary gap Question in Natural language Predicate in KB a How many people are there in Honolulu? population b What is the population of Honolulu? population CWhat is the total number of people in Honolulu? population d) When was Barack Obama born? dob e who is the wife of barack obama? marriage->person-name O When was Barack Obama's wife born? marriage→ >person→name kw.fudan. edu. cn/ga Weakness of previous solutions OE 知識 工場 Template/rule based approaches Neural network based approaches Questions are strings Questions are numeric Represent questions by string based Represent questions by numeric templates, such as regular expression embeddings By human labeling By learning from corpus PROS PROS: User-controllable Feasible to understand diverse Applicable to industry use questions CONs: CONS: Costly human efforts Poor interpretability Not good at handling the diversity of Not controllable. Unfriendly to industrial questions application. How to retain advantages from both approaches? kw.fudan. edu. cn/qa Our approach 知識 工場 Representation: concept based templates Questions are asking about entities Interpretable User-controllable Question What is the population How many people are What is the number of of honolulu? there in honolulu? people in Honolulu? Template What is the population How many people are hat is the total numbel of $city? there in $City of people in city Learn templates from QA corpus, instead of manfully construction 27 million templates, 2782 intents Understand diverse questions kw. fudan. edu. cn/ga System Architecture 知識 工場 Offline procedure value Learn the mapping from templates to user Online Procedure predicates: P(p t Question Input: qa corpora, large scale taxonomy KB Complex Question Parsing tit ● Output:P(P|T) 合/ predicate Probabilistic Inferencing -f-eeee(Template Repository: P(PD------- Online procedure Template Extraction for Offline Predicates Parsing, predicate inference and answer rocedure Predicate Entity value retrieval Expansion Identification Input: binary factoid questions ( BFQs) Knowledge QAc。rpus Output: answers in KG Problem model 知識 工場 Given a question g, our goal is to find an answer y with maximal probability ( v is a simple value) arg m axP(v=vh=g arg m ax P(v/l, e, tp t, p e: entity t: template; p: predicat Basic idea: We proposed a generative model to explain how a value is found for a given question, Rationality of probabilistic inference uncertainty(e.g. some questions intents are vague) Incompleteness (e.g. the knowledge base is almost always incomplete) noisy(e.g. answers in the Qa corpus could be wrong

972KB
基于知识图谱的问答
2018-03-20这是一份关于基于知识图谱的问答顶级会议,包含LSTM,交叉注意力机制
42.10MB
基于知识图谱的智能问答系统python实现(复旦大学论文基于qa语料和知识库的问答系统)
2018-03-11本代码实现是基于python实现的基于复旦大学崔万云博士的learing question answering over corpora and konwlege bases ,代码实现与论文有所出入
78KB
基于neo4j的简易医疗问答知识图谱
2019-01-13基于neo4j的简易医疗问答知识图谱,数据从ask120中爬取得到
3.51MB
基于知识图谱的问答系统关键技术研究
2017-11-28复旦大学博士论文,系统而全面地介绍了基于知识图谱的智能问答相关关键技术
1.26MB
基于知识图谱的问答系统综述
2016-09-19Question Answering over Knowledge Bases
-
下载
stm32f103_wifi实验.zip
stm32f103_wifi实验.zip
-
下载
基于微信小程序的图书交易平台.doc
基于微信小程序的图书交易平台.doc
-
学院
单片机完全学习课程全五季套餐
单片机完全学习课程全五季套餐
-
博客
基于wowchemy和hugo搭建个人网站
基于wowchemy和hugo搭建个人网站
-
博客
628.三个数的最大乘积
628.三个数的最大乘积
-
博客
Java 和大数据面试题
Java 和大数据面试题
-
博客
【我给面试官画饼】Python自动化测试面试题精讲
【我给面试官画饼】Python自动化测试面试题精讲
-
博客
TS - typescript 类(class)
TS - typescript 类(class)
-
博客
基于RISC-V架构的45条指令单周期CPU设计——第1章
基于RISC-V架构的45条指令单周期CPU设计——第1章
-
下载
靶向测序基因型检测(GBTS)技术及其应用.pdf
靶向测序基因型检测(GBTS)技术及其应用.pdf
-
学院
web前端开发规范
web前端开发规范
-
博客
输入一个数 减几次 输出结果 lesson :注意式子
输入一个数 减几次 输出结果 lesson :注意式子
-
学院
前端性能优化
前端性能优化
-
博客
通信原理第六章6.1数字基带传输
通信原理第六章6.1数字基带传输
-
学院
计算机网络基础
计算机网络基础
-
下载
基于混合推荐系统的在线题库和考试系统 (1).doc
基于混合推荐系统的在线题库和考试系统 (1).doc
-
下载
无源蜂鸣器播放《黑人抬棺》.rar
无源蜂鸣器播放《黑人抬棺》.rar
-
博客
rhcsa(4)
rhcsa(4)
-
学院
转行做IT-第5章 流程控制语句
转行做IT-第5章 流程控制语句
-
学院
SubstancePainter插件开发-基础入门
SubstancePainter插件开发-基础入门
-
学院
前端架构师-速成
前端架构师-速成
-
下载
黑群晖开启核显硬解(硬解解码)的两个文件extra.lzma和extra2.lzma
黑群晖开启核显硬解(硬解解码)的两个文件extra.lzma和extra2.lzma
-
下载
中山大学99-19年生物化学一历年考研试题.zip
中山大学99-19年生物化学一历年考研试题.zip
-
博客
2021-01-20
2021-01-20
-
下载
配置Xampp及本地域名.txt
配置Xampp及本地域名.txt
-
学院
Kotlin协程极简入门与解密
Kotlin协程极简入门与解密
-
博客
编译环境搭建及ubuntu常用命令
编译环境搭建及ubuntu常用命令
-
学院
ArcGIS Pro2.6和ArcGIS Enterprise学习
ArcGIS Pro2.6和ArcGIS Enterprise学习
-
下载
中国科学院大学《矩阵代数》期末考试试题.pdf
中国科学院大学《矩阵代数》期末考试试题.pdf
-
博客
8.4 Power Management
8.4 Power Management