//实例85:将数据"0x0f"写入AT24C02再读出送P1口显示
#include <reg51.h> // 包含51单片机寄存器定义的头文件
#include <intrins.h> //包含_nop_()函数定义的头文件
#define OP_READ 0xa1 // 器件地址以及读取操作,0xa1即为1010 0001B
#define OP_WRITE 0xa0 // 器件地址以及写入操作,0xa1即为1010 0000B
sbit SDA=P3^4; //将串行数据总线SDA位定义在为P3.4引脚
sbit SCL=P3^3; //将串行时钟总线SDA位定义在为P3.3引脚
/*****************************************************
函数功能:延时1ms
(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delaynms(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/***************************************************
函数功能:开始数据传送
***************************************************/
void start()
// 开始位
{
SDA = 1; //SDA初始化为高电平“1”
SCL = 1; //开始数据传送时,要求SCL为高电平“1”
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
SDA = 0; //SDA的下降沿被认为是开始信号
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
SCL = 0; //SCL为低电平时,SDA上数据才允许变化(即允许以后的数据传递)
}
/***************************************************
函数功能:结束数据传送
***************************************************/
void stop()
// 停止位
{
SDA = 0; //SDA初始化为低电平“0” _n
SCL = 1; //结束数据传送时,要求SCL为高电平“1”
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
SDA = 1; //SDA的上升沿被认为是结束信号
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
SDA=0;
SCL=0;
}
/***************************************************
函数功能:从AT24Cxx读取数据
出口参数:x
***************************************************/
unsigned char ReadData()
// 从AT24Cxx移入数据到MCU
{
unsigned char i;
unsigned char x; //储存从AT24Cxx中读出的数据
for(i = 0; i < 8; i++)
{
SCL = 1; //SCL置为高电平
x<<=1; //将x中的各二进位向左移一位
x|=(unsigned char)SDA; //将SDA上的数据通过按位“或“运算存入x中
SCL = 0; //在SCL的下降沿读出数据
}
return(x); //将读取的数据返回
}
/***************************************************
函数功能:向AT24Cxx的当前地址写入数据
入口参数:y (储存待写入的数据)
***************************************************/
//在调用此数据写入函数前需首先调用开始函数start(),所以SCL=0
bit WriteCurrent(unsigned char y)
{
unsigned char i;
bit ack_bit; //储存应答位
for(i = 0; i < 8; i++) // 循环移入8个位
{
SDA = (bit)(y&0x80); //通过按位“与”运算将最高位数据送到S
//因为传送时高位在前,低位在后
_nop_(); //等待一个机器周期
SCL = 1; //在SCL的上升沿将数据写入AT24Cxx
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
SCL = 0; //将SCL重新置为低电平,以在SCL线形成传送数据所需的8个脉冲
y <<= 1; //将y中的各二进位向左移一位
}
SDA = 1; // 发送设备(主机)应在时钟脉冲的高电平期间(SCL=1)释放SDA线,
//以让SDA线转由接收设备(AT24Cxx)控制
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
SCL = 1; //根据上述规定,SCL应为高电平
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
_nop_(); //等待一个机器周期
ack_bit = SDA; //接受设备(AT24Cxx)向SDA送低电平,表示已经接收到一个字节
//若送高电平,表示没有接收到,传送异常
SCL = 0; //SCL为低电平时,SDA上数据才允许变化(即允许以后的数据传递)
return ack_bit; // 返回AT24Cxx应答位
}
/***************************************************
函数功能:向AT24Cxx中的指定地址写入数据
入口参数:add (储存指定的地址);dat(储存待写入的数据)
***************************************************/
void WriteSet(unsigned char add, unsigned char dat)
// 在指定地址addr处写入数据WriteCurrent
{
start(); //开始数据传递
WriteCurrent(OP_WRITE); //选择要操作的AT24Cxx芯片,并告知要对其写入数据
WriteCurrent(add); //写入指定地址
WriteCurrent(dat); //向当前地址(上面指定的地址)写入数据
stop(); //停止数据传递
delaynms(4); //1个字节的写入周期为1ms, 最好延时1ms以上
}
/***************************************************
函数功能:从AT24Cxx中的当前地址读取数据
出口参数:x (储存读出的数据)
***************************************************/
unsigned char ReadCurrent()
{
unsigned char x;
start(); //开始数据传递
WriteCurrent(OP_READ); //选择要操作的AT24Cxx芯片,并告知要读其数据
x=ReadData(); //将读取的数据存入x
stop(); //停止数据传递
return x; //返回读取的数据
}
/***************************************************
函数功能:从AT24Cxx中的指定地址读取数据
入口参数:set_addr
出口参数:x
***************************************************/
unsigned char ReadSet(unsigned char set_addr)
// 在指定地址读取
{
start(); //开始数据传递
WriteCurrent(OP_WRITE); //选择要操作的AT24Cxx芯片,并告知要对其写入数据
WriteCurrent(set_addr); //写入指定地址
return(ReadCurrent()); //从指定地址读出数据并返回
}
/***************************************************
函数功能:主函数
***************************************************/
main(void)
{
SDA = 1; // SDA=1,SCL=1,使主从设备处于空闲状态
SCL = 1;
WriteSet(0x36,0x0f); //在指定地址“0x36”中写入数据“0x0f”
P1=ReadSet(0x36); //从指定地址“0x36中读取数据并送P1口显示
}
CrMylive.
- 粉丝: 1w+
- 资源: 4万+
最新资源
- 三维路径规划 基于灰狼改进算法的机器人路径规划mp-GWO和CS-GWO机器人路径规划算法 自由切GWO,CS-GWO算法进行对比 内涵详细的代码注释
- 电机定子压装机sw20全套技术资料100%好用.zip
- 模电数电数字电路,数字频率计,multisim 使用555 正弦波,方波,三角波都能测 提供multisim可以运行的原文件以及资料 频率太大会有微小误差 有仿真和文件说明资料
- 电梯厅门头双层升降交换焊接工作站sw19可编辑全套技术资料100%好用.zip
- 基于javaweb的个人网上银行系统源码+数据库+报告文档(MVC)
- 基于javaweb开发个人网上银行系统源码+数据库+实验报告(MVC)
- SAR ADC逐次逼近型ADC全流程设计 包括SAR ADC的理论分析,从基本的ADC结构到电路原理 包括SAR ADC的Matlab建模,从基础的Matlab代码讲解到各种非理想因素的模型分析
- 三相三电平维也纳整流器simulink仿真模型 1控制算法采用电压电流双闭环控制; 2外部电压环路为PI控制器; 3内部电流环路为砰砰迟滞控制器(又叫电流置环控制)
- 高级Simulink锂离子电池充放电模型 各种充放电电流都可以设置,可研究各类电流对锂离子电池的影响,包括电压、温度、电池最大容量、老化循环圈数以及欧姆内阻变化的影响 锂离子电池模型是Simulin
- 电机马达 永磁同步电机矢量控制foc simulink仿真 转速电流双闭环,pi控制器matlab永磁同步电机双闭环矢量控制仿真有资料
- 基于C++和opencv实现全景图像拼接源码(高分项目).zip
- XFlow 格子玻尔兹曼方法 Lattice Boltzmann 两相流 毛细管 自发渗吸 -Lattice Boltzmann Method -格子玻尔兹曼方法模拟两相流设置方法 -自发渗吸
- 基于springboot+vue库存管理系统springboot+vue+mybatis+mysqlspringboot
- COMSOL考虑倾角裂隙注浆数值模拟 Comsol5.6模拟 针对注浆过程中考虑倾角的裂隙注浆问题 应用有限元计算软件COMSOL Multiphysics建立倾角裂隙注浆的数值模型 研究注浆
- 51单片机LCD1602数字电压表(二) C程序、proteus仿真、报告、仿真操作视频 支持LCD1602显示被测电压 量程:0-5V
- 多用途手动操作救援小车sw21可编辑全套技术资料100%好用.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈