%% SVM神经网络的数据分类预测----意大利葡萄酒种类识别
%
%
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr> <td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对<a target="_blank" href="http://www.ilovematlab.cn/thread-48362-1-1.html"><font color="#0000FF">该案例</font></a>提问,做到有问必答。</font></span></td></tr><tr> <td><span class="comment"><font size="2">2:此案例有配套的教学视频,配套的完整可运行Matlab程序。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 3:以下内容为该案例的部分内容(约占该案例完整内容的1/10)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 4:此案例为原创案例,转载请注明出处(<a target="_blank" href="http://www.ilovematlab.cn/">Matlab中文论坛</a>,<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html">《Matlab神经网络30个案例分析》</a>)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 6:您看到的以下内容为初稿,书籍的实际内容可能有少许出入,以书籍实际发行内容为准。</font></span></td> </tr><tr> <td><span class="comment"><font size="2"> 7:此书其他常见问题、预定方式等,<a target="_blank" href="http://www.ilovematlab.cn/thread-47939-1-1.html">请点击这里</a>。</font></span></td> </tr></table>
% </html>
%
%% 清空环境变量
close all;
clear;
clc;
format compact;
%% 数据提取
% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量
load chapter12_wine.mat;
% 画出测试数据的box可视化图
figure;
boxplot(wine,'orientation','horizontal','labels',categories);
title('wine数据的box可视化图','FontSize',12);
xlabel('属性值','FontSize',12);
grid on;
% 画出测试数据的分维可视化图
figure
subplot(3,5,1);
hold on
for run = 1:178
plot(run,wine_labels(run),'*');
end
xlabel('样本','FontSize',10);
ylabel('类别标签','FontSize',10);
title('class','FontSize',10);
for run = 2:14
subplot(3,5,run);
hold on;
str = ['attrib ',num2str(run-1)];
for i = 1:178
plot(i,wine(i,run-1),'*');
end
xlabel('样本','FontSize',10);
ylabel('属性值','FontSize',10);
title(str,'FontSize',10);
end
% 选定训练集和测试集
% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集
train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];
% 相应的训练集的标签也要分离出来
train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
% 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集
test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];
% 相应的测试集的标签也要分离出来
test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];
%% 数据预处理
% 数据预处理,将训练集和测试集归一化到[0,1]区间
[mtrain,ntrain] = size(train_wine);
[mtest,ntest] = size(test_wine);
dataset = [train_wine;test_wine];
% mapminmax为MATLAB自带的归一化函数
[dataset_scale,ps] = mapminmax(dataset',0,1);
dataset_scale = dataset_scale';
train_wine = dataset_scale(1:mtrain,:);
test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );
%% SVM网络训练
model = svmtrain(train_wine_labels, train_wine, '-c 2 -g 1');
%% SVM网络预测
[predict_label, accuracy] = svmpredict(test_wine_labels, test_wine, model);
%% 结果分析
% 测试集的实际分类和预测分类图
% 通过图可以看出只有一个测试样本是被错分的
figure;
hold on;
plot(test_wine_labels,'o');
plot(predict_label,'r*');
xlabel('测试集样本','FontSize',12);
ylabel('类别标签','FontSize',12);
legend('实际测试集分类','预测测试集分类');
title('测试集的实际分类和预测分类图','FontSize',12);
grid on;
%%
%
% <html>
% <table align="center" > <tr> <td align="center"><font size="2">版权所有:</font><a
% href="http://www.ilovematlab.cn/">Matlab中文论坛</a> <script
% src="http://s3.cnzz.com/stat.php?id=971931&web_id=971931&show=pic" language="JavaScript" ></script> </td> </tr></table>
% </html>
%
CrMylive.
- 粉丝: 1w+
- 资源: 4万+
最新资源
- IP102中分离出来的害虫数据集,使用COCO JSON标注
- 几何物体检测50-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 石家庄2005-2024年近20年历史气象数据下载
- C语言实例-毕业设计项目开发:系统信息获取与显示工具-开题报告,论文,答辩PPT参考
- 秦皇岛2005-2024年近20年历史气象数据下载
- 太原市2005-2024年近20年历史气象数据下载
- 大同市2005-2024年近20年历史气象数据下载
- 沈阳市2005-2024年近20年历史气象数据下载
- 长春市2005-2024年近20年历史气象数据下载
- 齐齐哈尔市2005-2024年近20年历史气象数据下载
- 徐州市2005-2024年近20年历史气象数据下载
- nvm desktop -4.0.5-x64-setup
- 医护人员检测22-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 饿了么bxet参数算法
- 南通市2005-2024年近20年历史气象数据下载
- 连云港市2005-2024年近20年历史气象数据下载
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈