/*-----------------------------------------------
名称:IIC协议
论坛:www.doflye.net
编写:shifang
修改:无
内容:函数是采用软件延时的方法产生SCL脉冲,固对高晶振频率要作 一定的修改....(本例是1us机器
周期,即晶振频率要小于12MHZ)
------------------------------------------------*/
#include "i2c.h"
#include "delay.h"
#define _Nop() _nop_() //定义空指令
bit ack; //应答标志位
sbit SDA=P1^1;
sbit SCL=P1^0;
/*------------------------------------------------
启动总线
------------------------------------------------*/
void Start_I2c()
{
SDA=1; //发送起始条件的数据信号
_Nop();
SCL=1;
_Nop(); //起始条件建立时间大于4.7us,延时
_Nop();
_Nop();
_Nop();
_Nop();
SDA=0; //发送起始信号
_Nop(); //起始条件锁定时间大于4μ
_Nop();
_Nop();
_Nop();
_Nop();
SCL=0; //钳住I2C总线,准备发送或接收数据
_Nop();
_Nop();
}
/*------------------------------------------------
结束总线
------------------------------------------------*/
void Stop_I2c()
{
SDA=0; //发送结束条件的数据信号
_Nop(); //发送结束条件的时钟信号
SCL=1; //结束条件建立时间大于4μ
_Nop();
_Nop();
_Nop();
_Nop();
_Nop();
SDA=1; //发送I2C总线结束信号
_Nop();
_Nop();
_Nop();
_Nop();
}
/*----------------------------------------------------------------
字节数据传送函数
函数原型: void SendByte(unsigned char c);
功能: 将数据c发送出去,可以是地址,也可以是数据,发完后等待应答,并对
此状态位进行操作.(不应答或非应答都使ack=0 假)
发送数据正常,ack=1; ack=0表示被控器无应答或损坏。
------------------------------------------------------------------*/
void SendByte(unsigned char c)
{
unsigned char BitCnt;
for(BitCnt=0;BitCnt<8;BitCnt++) //要传送的数据长度为8位
{
if((c<<BitCnt)&0x80)SDA=1; //判断发送位
else SDA=0;
_Nop();
SCL=1; //置时钟线为高,通知被控器开始接收数据位
_Nop();
_Nop(); //保证时钟高电平周期大于4μ
_Nop();
_Nop();
_Nop();
SCL=0;
}
_Nop();
_Nop();
SDA=1; //8位发送完后释放数据线,准备接收应答位
_Nop();
_Nop();
SCL=1;
_Nop();
_Nop();
_Nop();
if(SDA==1)ack=0;
else ack=1; //判断是否接收到应答信号
SCL=0;
_Nop();
_Nop();
}
/*----------------------------------------------------------------
字节数据传送函数
函数原型: unsigned char RcvByte();
功能: 用来接收从器件传来的数据,并判断总线错误(不发应答信号),
发完后请用应答函数。
------------------------------------------------------------------*/
unsigned char RcvByte()
{
unsigned char retc;
unsigned char BitCnt;
retc=0;
SDA=1; //置数据线为输入方式
for(BitCnt=0;BitCnt<8;BitCnt++)
{
_Nop();
SCL=0; //置时钟线为低,准备接收数据位
_Nop();
_Nop(); //时钟低电平周期大于4.7us
_Nop();
_Nop();
_Nop();
SCL=1; //置时钟线为高使数据线上数据有效
_Nop();
_Nop();
retc=retc<<1;
if(SDA==1)retc=retc+1; //读数据位,接收的数据位放入retc中
_Nop();
_Nop();
}
SCL=0;
_Nop();
_Nop();
return(retc);
}
/*----------------------------------------------------------------
应答子函数
原型: void Ack_I2c(void);
----------------------------------------------------------------*/
/*void Ack_I2c(void)
{
SDA=0;
_Nop();
_Nop();
_Nop();
SCL=1;
_Nop();
_Nop(); //时钟低电平周期大于4μ
_Nop();
_Nop();
_Nop();
SCL=0; //清时钟线,钳住I2C总线以便继续接收
_Nop();
_Nop();
}*/
/*----------------------------------------------------------------
非应答子函数
原型: void NoAck_I2c(void);
----------------------------------------------------------------*/
void NoAck_I2c(void)
{
SDA=1;
_Nop();
_Nop();
_Nop();
SCL=1;
_Nop();
_Nop(); //时钟低电平周期大于4μ
_Nop();
_Nop();
_Nop();
SCL=0; //清时钟线,钳住I2C总线以便继续接收
_Nop();
_Nop();
}
/*----------------------------------------------------------------
向无子地址器件发送字节数据函数
函数原型: bit ISendByte(unsigned char sla,ucahr c);
功能: 从启动总线到发送地址,数据,结束总线的全过程,从器件地址sla.
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit ISendByte(unsigned char sla,unsigned char c)
{
Start_I2c(); //启动总线
SendByte(sla); //发送器件地址
if(ack==0)return(0);
SendByte(c); //发送数据
if(ack==0)return(0);
Stop_I2c(); //结束总线
return(1);
}
*/
/*----------------------------------------------------------------
向有子地址器件发送多字节数据函数
函数原型: bit ISendStr(unsigned char sla,unsigned char suba,ucahr *s,unsigned char no);
功能: 从启动总线到发送地址,子地址,数据,结束总线的全过程,从器件
地址sla,子地址suba,发送内容是s指向的内容,发送no个字节。
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit ISendStr(unsigned char sla,unsigned char suba,unsigned char *s,unsigned char no)
{
unsigned char i;
for(i=0;i<no;i++)
{
Start_I2c(); //启动总线
SendByte(sla); //发送器件地址
if(ack==0)return(0);
SendByte(suba); //发送器件子地址
if(ack==0)return(0);
SendByte(*s); //发送数据
if(ack==0)return(0);
Stop_I2c(); //结束总线
DelayMs(1); //必须延时等待芯片内部自动处理数据完毕
s++;
suba++;
}
return(1);
}
*/
/*----------------------------------------------------------------
向无子地址器件读字节数据函数
函数原型: bit IRcvByte(unsigned char sla,ucahr *c);
功能: 从启动总线到发送地址,读数据,结束总线的全过程,从器件地
址sla,返回值在c.
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit IRcvByte(unsigned char sla,unsigned char *c)
{
Start_I2c(); //启动总线
SendByte(sla+1); //发送器件地址
if(ack==0)return(0);
*c=RcvByte(); //读取数据
NoAck_I2c(); //发送非就答位
Stop_I2c(); //结束总线
return(1);
}
*/
/*----------------------------------------------------------------
向有子地址器件读取多字节数据函数
函数原型: bit ISendStr(unsigned char sla,unsigned char suba,ucahr *s,unsigned char no);
功能: 从启动总线到发送地址,子地址,读数据,结束总线的全过程,从器件
地址sla,子地址suba,读出的内容放入s指向的存储区,读no个字节。
如果返回1表示操作成功,否则操作有误。
注意: 使用前必须已结束总线。
----------------------------------------------------------------*/
/*bit IRcvStr(unsigned char sla,unsigned char suba,unsigned char *s,unsigned char no)
{
unsigned char i;
Start_I2c(); //启动总线
SendByte(sla); //发送器件地址
if(ack==0)return(0);
SendByte(suba); //发送器件子地址
if(ack==0)return(0);
Start_I2c();
SendByte(sla+1);
if(ack==0)return(0);
单片机电池充电仿真protues
需积分: 0 6 浏览量
更新于2023-10-23
收藏 119KB ZIP 举报
在电子工程领域,单片机(Microcontroller)是一种集成了CPU、内存、定时器/计数器、输入/输出接口等部件的微型计算机系统,广泛应用于各种自动化设备和控制系统。在实际开发过程中,为了减少硬件成本和提高设计效率,工程师常常会使用仿真工具进行原型验证。Protues是一款强大的嵌入式系统仿真软件,它允许用户在虚拟环境中模拟硬件电路,包括单片机系统及其外围设备,如电池充电电路。
"单片机电池充电仿真protues"这个主题主要关注如何利用Protues软件进行电池充电过程的模拟。电池充电通常有多种模式,其中最常见的是涓流充电、恒压充电和恒流充电,这三种模式在电池充电过程中扮演着不同的角色,以确保电池安全、有效地充满电。
1. **涓流充电**:在电池电压极低或完全放电时,为了防止电池过快地吸收电流导致损坏,初始阶段采用涓流充电。这种充电方式电流小,可以慢慢恢复电池的电压,使其进入适合快速充电的状态。
2. **恒流充电**:当电池电压提升到一定程度后,转为恒流充电。在这个阶段,充电电流保持恒定,以保证电池在较短的时间内获取大量能量。通常,这个阶段的电流设定为电池容量的一定比例,如0.1C到1C,C表示电池的额定容量。
3. **恒压充电**:当电池电压达到特定阈值,如镍氢电池的1.4V/cell或锂电池的4.2V/cell,充电进入恒压阶段。此时,充电器保持恒定的电压输出,而电流逐渐减小,直到电池接近饱和状态。
在Protues环境下,我们可以设置一个包含这些充电阶段的仿真模型。需要选择合适的单片机型号,例如STM8S或AVR系列,然后配置电源和充电控制器电路。接着,设置电池模型,通过模拟电池电压和内阻的变化来反映充电过程。还可以添加电流检测和电压监测模块,以便实时监控充电状态。编写控制程序,实现对充电过程的智能管理,如根据电池电压切换充电模式。
通过Protues进行单片机电池充电仿真的优势在于,它不仅能够帮助我们验证硬件设计,还能在软件层面优化充电算法,避免实际操作中可能遇到的问题。此外,仿真结果可以生成波形图,直观展示电池电压、电流随时间的变化,这对于理解和改进充电策略非常有帮助。
在文件“电池充电-涓流-恒压-恒流-三段式充电”中,很可能是提供了这样一个完整的仿真项目,包含了相关电路设计、单片机程序代码以及仿真步骤,供学习者参考和实践。通过研究这些内容,可以深入理解电池充电原理,并掌握如何在Protues中构建和调试此类系统。