没有合适的资源?快使用搜索试试~ 我知道了~
基于HBase和SimHash的大数据K-近邻算法简
需积分: 13 9 下载量 88 浏览量
2018-07-04
15:39:50
上传
评论
收藏 335KB PDF 举报
温馨提示
针对大数据K-近邻(K-nearest neighbors,K-NN)计算复杂度高的问题,提出一种基于HBase和Sim Hash的大数据K-近邻分类算法。利用Sim Hash算法将大数据集从原空间映射到Hamming空间,得到哈希签名值集合;将样例的行键与值的二元对存储到HBase数据库中,行健(rowkey)为样例的哈希签名值,值(value)为样例的类别;对于测试样例,以其哈希签名值作为健rowkey,从HBase数据库中获取所有样例的value,通过对这些values进行多数投票,即可以得到测试样例的类别。与基于MapReduce的K-NN和基于Spark的K-NN在运行时间和测试精度两方面进行试验比较。试验结果显示,在保持分类能力的前提下,提出的算法的运行时间远远低于其他两种方法。
资源推荐
资源评论
资源评论
qq_28339273
- 粉丝: 9
- 资源: 196
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功