# Yolo v4, v3 and v2 for Windows and Linux
## (neural networks for object detection)
Paper YOLO v4: https://arxiv.org/abs/2004.10934
Paper Scaled YOLO v4: * **[CVPR 2021](https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Scaled-YOLOv4_Scaling_Cross_Stage_Partial_Network_CVPR_2021_paper.html)**: use to reproduce results: [ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
More details in articles on medium:
- [Scaled_YOLOv4](https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-ms-coco-dataset-39dfa22fa982?source=friends_link&sk=c8553bfed861b1a7932f739d26f487c8)
- [YOLOv4](https://medium.com/@alexeyab84/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe?source=friends_link&sk=6039748846bbcf1d960c3061542591d7)
Manual: https://github.com/AlexeyAB/darknet/wiki
Discussion:
- [Reddit](https://www.reddit.com/r/MachineLearning/comments/gydxzd/p_yolov4_the_most_accurate_realtime_neural/)
- [Google-groups](https://groups.google.com/forum/#!forum/darknet)
- [Discord](https://discord.gg/zSq8rtW)
About Darknet framework: http://pjreddie.com/darknet/
[![Darknet Continuous Integration](https://github.com/AlexeyAB/darknet/workflows/Darknet%20Continuous%20Integration/badge.svg)](https://github.com/AlexeyAB/darknet/actions?query=workflow%3A%22Darknet+Continuous+Integration%22)
[![CircleCI](https://circleci.com/gh/AlexeyAB/darknet.svg?style=svg)](https://circleci.com/gh/AlexeyAB/darknet)
[![Contributors](https://img.shields.io/github/contributors/AlexeyAB/Darknet.svg)](https://github.com/AlexeyAB/darknet/graphs/contributors)
[![License: Unlicense](https://img.shields.io/badge/license-Unlicense-blue.svg)](https://github.com/AlexeyAB/darknet/blob/master/LICENSE)
[![DOI](https://zenodo.org/badge/75388965.svg)](https://zenodo.org/badge/latestdoi/75388965)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2004.10934-B31B1B.svg)](https://arxiv.org/abs/2004.10934)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2011.08036-B31B1B.svg)](https://arxiv.org/abs/2011.08036)
[![colab](https://user-images.githubusercontent.com/4096485/86174089-b2709f80-bb29-11ea-9faf-3d8dc668a1a5.png)](https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE)
[![colab](https://user-images.githubusercontent.com/4096485/86174097-b56b9000-bb29-11ea-9240-c17f6bacfc34.png)](https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg)
- [YOLOv4 model zoo](https://github.com/AlexeyAB/darknet/wiki/YOLOv4-model-zoo)
- [Requirements (and how to install dependencies)](#requirements-for-windows-linux-and-macos)
- [Pre-trained models](#pre-trained-models)
- [FAQ - frequently asked questions](https://github.com/AlexeyAB/darknet/wiki/FAQ---frequently-asked-questions)
- [Explanations in issues](https://github.com/AlexeyAB/darknet/issues?q=is%3Aopen+is%3Aissue+label%3AExplanations)
- [Yolo v4 in other frameworks (TensorRT, TensorFlow, PyTorch, OpenVINO, OpenCV-dnn, TVM,...)](#yolo-v4-in-other-frameworks)
- [Datasets](#datasets)
- [Yolo v4, v3 and v2 for Windows and Linux](#yolo-v4-v3-and-v2-for-windows-and-linux)
- [(neural networks for object detection)](#neural-networks-for-object-detection)
- [GeForce RTX 2080 Ti](#geforce-rtx-2080-ti)
- [Youtube video of results](#youtube-video-of-results)
- [How to evaluate AP of YOLOv4 on the MS COCO evaluation server](#how-to-evaluate-ap-of-yolov4-on-the-ms-coco-evaluation-server)
- [How to evaluate FPS of YOLOv4 on GPU](#how-to-evaluate-fps-of-yolov4-on-gpu)
- [Pre-trained models](#pre-trained-models)
- [Requirements for Windows, Linux and macOS](#requirements-for-windows-linux-and-macos)
- [Yolo v4 in other frameworks](#yolo-v4-in-other-frameworks)
- [Datasets](#datasets)
- [Improvements in this repository](#improvements-in-this-repository)
- [How to use on the command line](#how-to-use-on-the-command-line)
- [For using network video-camera mjpeg-stream with any Android smartphone](#for-using-network-video-camera-mjpeg-stream-with-any-android-smartphone)
- [How to compile on Linux/macOS (using `CMake`)](#how-to-compile-on-linuxmacos-using-cmake)
- [Using also PowerShell](#using-also-powershell)
- [How to compile on Linux (using `make`)](#how-to-compile-on-linux-using-make)
- [How to compile on Windows (using `CMake`)](#how-to-compile-on-windows-using-cmake)
- [How to compile on Windows (using `vcpkg`)](#how-to-compile-on-windows-using-vcpkg)
- [How to train with multi-GPU](#how-to-train-with-multi-gpu)
- [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
- [How to train tiny-yolo (to detect your custom objects)](#how-to-train-tiny-yolo-to-detect-your-custom-objects)
- [When should I stop training](#when-should-i-stop-training)
- [Custom object detection](#custom-object-detection)
- [How to improve object detection](#how-to-improve-object-detection)
- [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
- [How to use Yolo as DLL and SO libraries](#how-to-use-yolo-as-dll-and-so-libraries)
- [Citation](#citation)
![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
![scaled_yolov4](https://user-images.githubusercontent.com/4096485/112776361-281d8380-9048-11eb-8083-8728b12dcd55.png) AP50:95 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2011.08036
----
![modern_gpus](https://user-images.githubusercontent.com/4096485/82835867-f1c62380-9ecd-11ea-9134-1598ed2abc4b.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934
tkDNN-TensorRT accelerates YOLOv4 **~2x** times for batch=1 and **3x-4x** times for batch=4.
- tkDNN: https://github.com/ceccocats/tkDNN
- OpenCV: https://gist.github.com/YashasSamaga/48bdb167303e10f4d07b754888ddbdcf
### GeForce RTX 2080 Ti
| Network Size | Darknet, FPS (avg) | tkDNN TensorRT FP32, FPS | tkDNN TensorRT FP16, FPS | OpenCV FP16, FPS | tkDNN TensorRT FP16 batch=4, FPS | OpenCV FP16 batch=4, FPS | tkDNN Speedup |
|:--------------------------:|:------------------:|-------------------------:|-------------------------:|-----------------:|---------------------------------:|-------------------------:|--------------:|
|320 | 100 | 116 | **202** | 183 | 423 | **430** | **4.3x** |
|416 | 82 | 103 | **162** | 159 | 284 | **294** | **3.6x** |
|512 | 69 | 91 | 134 | **138** | 206 | **216** | **3.1x** |
|608 | 53 | 62 | 103 | **115** | 150 | **150** | **2.8x** |
|Tiny 416 | 443 | 609 | **790** | 773 | **1774** | 1353 | **3.5x** |
|Tiny 416 CPU Core i7 7700HQ | 3.4 | - | - | 42 | - | 39 | **12x** |
- Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80283279-0e303e00-871f-11ea-814c-870967d77fd1.png)
- Yolo v4 tiny comparison: [tiny_fps](https://user-images.githubusercontent.com/4096485/85734112-6e366700-b705-11ea-95d1-fcba0de76d72.png)
- CSPNet: [paper](https://arxiv.org/abs/1911.11929) and [map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Darknet/YOLOv4训练蒂法人脸识别模型 文件包括:darknet源码+蒂法图片+蒂法图片标注数据+训练配置+训练结果权重+测试图片和视频+测试结果文件 训练教程:https://feater.top/darknet/tifa-with-yolov4 视频测试效果:https://www.bilibili.com/video/BV1qL4y1T7ZB/ 训练平台为戴尔G15 1511 8核16线程 nvidia3060 土豪专用链接
资源详情
资源评论
资源推荐
收起资源包目录
Darknet/YOLOv4训练蒂法人脸识别模型 (2786个子文件)
035012ecfe1ddfd7c2e07cf6fcab831f69d119 115B
0bf84c19e38214219dbd3345f04ce778426c57 828B
0ef5fc3f19ac2647688c5a75ccd4b566a0b102 8KB
110aa60dba79904df9f4771794b56a0e3670d4 3KB
128511eff5bf3934d91312d0fdca5c166f4e95 940B
12bea1e5be5ec0e77f1af49db3043af0b97d62 131B
137d16f60aca5e9cbcef505472c3833447971c 592B
2120695e09a048ea346e771380439c918ead9e 711B
258850d2bd867865296d0f9fc0f02b7b20f17d 4KB
262bd03eee33b2e309bfaaf75b488a3ef37d80 116B
49ffd6c174f040635d66da08d9afb747daf7a9 939B
4b8f8023316d6c1ff156b7fe70c314c04d2e6c 7KB
5080382e8b89a52b1931e89e8f1c2c833e8241 752B
53e8f7870cff0336b4070ca5ded0a8804749af 6KB
544d0a831d61b3a922733634583ae493fef1e4 942B
5e2a161def19ab636fc0e9170ab5aabb219751 4KB
5e9ac13553e3146fa56e18b41550e57fe32fed 5KB
60e8b31277243b32725bc9804241563161e030 730B
627f5b332d3538781b063a5424146aeb982daa 4KB
70951e0a5e68762db394bf10445b58f24efae0 23KB
774aa812b61fe44b8b26f3835aa24e593e7563 8KB
7b72db114a60b254a4bb62091558a4ee04946b 581B
7ce294d622c7d8dc50917c556797a8924a318c 131B
7d52d3cc3b8f3233ce8111aa9ed00cc7a87b6f 941B
804e736c3dc152a26555179249c4328bb5f338 9KB
910b1fa918ee16548590c4c870035c416987dd 655B
libpthreadGC2.a 91KB
aa6cceb6c3a9c01b877110d79f47610e24ec07 576B
yolov4_tifa.avi 384.09MB
b63dd918ff0c2ba4ec2710ba7dc2a6a029a821 8KB
bafb1717d2d94eabdd04e0986794adf9d89f56 2KB
bc788b96f655663e4b0dc1cf7c60037712e4c0 21KB
gemm.c 102KB
parser.c 93KB
detector.c 77KB
data.c 75KB
convolutional_layer.c 65KB
conv_lstm_layer.c 59KB
network.c 51KB
yolo_layer.c 51KB
image.c 48KB
classifier.c 45KB
gaussian_yolo_layer.c 36KB
blas.c 32KB
box.c 29KB
go.c 26KB
lstm_layer.c 25KB
utils.c 24KB
softmax_layer.c 24KB
region_layer.c 22KB
dark_cuda.c 20KB
darknet.c 19KB
demo.c 17KB
batchnorm_layer.c 17KB
coco.c 16KB
gru_layer.c 15KB
rnn.c 14KB
connected_layer.c 14KB
maxpool_layer.c 14KB
yolo.c 14KB
crnn_layer.c 14KB
getopt.c 13KB
layer.c 13KB
shortcut_layer.c 12KB
activations.c 12KB
detection_layer.c 12KB
captcha.c 11KB
compare.c 11KB
rnn_layer.c 10KB
nightmare.c 9KB
kmeansiou.c 9KB
local_layer.c 9KB
cifar.c 8KB
matrix.c 8KB
rnn_vid.c 7KB
deconvolutional_layer.c 6KB
normalization_layer.c 6KB
route_layer.c 5KB
scale_channels_layer.c 5KB
representation_layer.c 5KB
voxel.c 5KB
tag.c 4KB
writing.c 4KB
cost_layer.c 4KB
im2col.c 4KB
super.c 4KB
tree.c 4KB
dice.c 4KB
col2im.c 4KB
sam_layer.c 3KB
option_list.c 3KB
upsample_layer.c 3KB
reorg_layer.c 3KB
reorg_old_layer.c 3KB
dropout_layer.c 3KB
crop_layer.c 3KB
swag.c 2KB
cpu_gemm.c 2KB
avgpool_layer.c 2KB
list.c 2KB
共 2786 条
- 1
- 2
- 3
- 4
- 5
- 6
- 28
幽迷狂
- 粉丝: 303
- 资源: 25
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- (源码)基于JavaFX和MySQL的医院挂号管理系统.zip
- (源码)基于IdentityServer4和Finbuckle.MultiTenant的多租户身份认证系统.zip
- (源码)基于Spring Boot和Vue3+ElementPlus的后台管理系统.zip
- (源码)基于C++和Qt框架的dearoot配置管理系统.zip
- (源码)基于 .NET 和 EasyHook 的虚拟文件系统.zip
- (源码)基于Python的金融文档智能分析系统.zip
- (源码)基于Java的医药管理系统.zip
- (源码)基于Java和MySQL的学生信息管理系统.zip
- (源码)基于ASP.NET Core的零售供应链管理系统.zip
- (源码)基于PythonSpleeter的戏曲音频处理系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0