# MLAPP-CN
MLAPP 中文笔记项目
## 在线阅读
<https://kivy-cn.github.io/MLAPP-CN>
## 笔记项目概述
本系列是一个新坑, 还希望大家批评指正!
### 书中疑似错误记录
/blob/master/Error.md
### 笔记进度追踪
- [x] 01 Introduction 1~26
- [x] 02 Probability 27~64 (练习略)
- [x] 03 Generative models for discrete data 65~96(练习略)
- [x] 04 Gaussian models 97~148(练习略)
- [x] 05 Bayesian statistics 149~190(练习略)
- [x] 06 Frequentist statistics 191~216(练习略)
- [x] 07 Linear regression 217~244(练习略)
- [x] 08 Logistic regression 245~280(练习略)
- [x] 09 Generalized linear models and the exponential family 281~306(练习略)
- [x] 10 Directed graphical models (Bayes nets) 307~336(练习略)
- [x] 11 Mixture models and the EM algorithm 337~380(当前进度 337)
- [ ] 12 Latent linear models 381~420
- [ ] 13 Sparse linear models 421~478
- [ ] 14 Kernels 479~514
- [ ] 15 Gaussian processes 515~542
- [ ] 16 Adaptive basis function models 543~588
- [ ] 17 Markov and hidden Markov models 589~630
- [ ] 18 State space models 631~660
- [ ] 19 Undirected graphical models (Markov random fields) 661~706
- [ ] 20 Exact inference for graphical models 707~730
- [ ] 21 Variational inference 731~766
- [ ] 22 More variational inference 767~814
- [ ] 23 Monte Carlo inference 815~836
- [ ] 24 Markov chain Monte Carlo (MCMC) inference 837~874
- [ ] 25 Clustering 875~906
- [ ] 26 Graphical model structure learning 907~944
- [ ] 27 Latent variable models for discrete data 945~994
- [ ] 28 Deep learning 995~1009
# MLAPP-CN
MLAPP Chinese Notes Project
## Read Online
<https://kivy-cn.github.io/MLAPP-CN>
## Note Project Overview
This series is a new pit, and I hope everyone will criticize me!
### Suspected error record in book
/blob/master/Error.md
### note progress tracking
- [x] 01 Introduction 1~26
- [x] 02 Probability 27~64 (Exercise slightly)
- [x] 03 Generative models for discrete data 65~96 (execution slightly)
- [x] 04 Gaussian models 97~148 (execution slightly)
- [x] 05 Bayesian statistics 149~190 (practice slightly)
- [x] 06 Frequentist statistics 191~216 (execution slightly)
- [x] 07 Linear regression 217~244 (practice slightly)
- [x] 08 Logistic regression 245~280 (practice slightly)
- [x] 09 Generalized linear models and the exponential family 281~306 (execution slightly)
- [x] 10 Directed graphical models (Bayes nets) 307~336 (practice slightly)
- [x] 11 Mixture models and the EM algorithm 337~380 (current progress 337)
- [ ] 12 Latent linear models 381~420
- [ ] 13 Sparse linear models 421~478
- [ ] 14 Kernels 479~514
- [ ] 15 Gaussian processes 515~542
- [ ] 16 Adaptive basis function models 543~588
- [ ] 17 Markov and hidden Markov models 589~630
- [ ] 18 State space models 631~660
- [ ] 19 Undirected graphical models (Markov random fields) 661~706
- [ ] 20 Exact inference for graphical models 707~730
- [ ] 21 Variational inference 731~766
- [ ] 22 More variational inference 767~814
- [ ] 23 Monte Carlo inference 815~836
- [ ] 24 Markov chain Monte Carlo (MCMC) inference 837~874
- [ ] 25 Clustering 875~906
- [ ] 26 Graphical model structure learning 907~944
- [ ] 27 Latent variable models for discrete data 945~994
- [ ] 28 Deep learning 995~1009
免责声明:
1.本资源仅供学习和交流使用,不保证其准确性、完整性、及时性或适用性。
2.本资源仅包含一般信息,不构成专业建议。在使用本资源时,请务必自行研究并谨慎决策。
3.我已尽力确保本资源的正确性和合法性,但不对其准确性、完整性和及时性做出保证。
4.本资源不应用于商业用途。
5.在使用本资源的过程中,用户应自行承担所有风险和责任,并遵守相关法律法规。
6.对于因使用本资源而产生的任何损失或损害,我概不负责。
请确保在使用本资源时仔细阅读并遵守以上免责声明。如果您有任何疑问或需要进一步帮助,请联系我。
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
A Chinese Notes of MLAPP,MLAPP 中文笔记项目 https:--z-MLAPP-CN.zip (37个子文件)
MLAPP-CN-master
06 Frequentist statistics.md 56KB
PDF
06 Frequentist statistics.pdf 2.24MB
02 Probability.pdf 3.2MB
07 Linear regression.pdf 343KB
01 Introduction.pdf 697KB
03 Generative models for discrete data.pdf 2.15MB
10 Directed graphical models (Bayes nets).pdf 389KB
00 PreFace.pdf 64KB
21_Variational-Inference.md 35KB
05 Bayesian statistics.pdf 3.54MB
21_Variational-Inference.pdf 339KB
09 Generalized linear models and the exponential family.pdf 431KB
08 Logistic regression.pdf 3.05MB
01 Introduction.md 35KB
04 Gaussian models.md 85KB
09 Generalized linear models and the exponential family.md 54KB
10 Directed graphical models (Bayes nets).md 52KB
21_Variational-Inference.Rmd 1KB
.nojekyll 0B
08 Logistic regression.md 60KB
preamble.tex 223B
11_Mixture-Model-and-the-EM-algorithm.md 23KB
LICENSE 35KB
07 Linear regression.md 37KB
Error.md 3KB
21_Variational-Inference.md 35KB
03 Generative models for discrete data.md 48KB
00 PreFace.md 3KB
05 Bayesian statistics.md 80KB
Abbreviations.md 2KB
issue_template.md 659B
index.html 944B
02 Probability.md 60KB
.gitignore 1KB
SUMMARY.md 765B
README.md 4KB
MLAPP-CN 进度汇总.md 473KB
共 37 条
- 1
资源评论
武昌库里写JAVA
- 粉丝: 6659
- 资源: 3166
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功