馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Disabling wandb](#disabling-wandb)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
* training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
* To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【资源说明】 基于Python+Flask部署YOLOv5的PCB电路板缺陷模型源码+部署文档+全部数据资料 高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
资源推荐
资源详情
资源评论
收起资源包目录
基于Python+Flask部署YOLOv5的PCB电路板缺陷模型源码+部署文档+全部数据资料 高分项目.zip (164个子文件)
index.css 227KB
style.css 4KB
Dockerfile 821B
.gitignore 231B
.gitignore 176B
.gitignore 47B
index.html 557B
index.html 321B
favicon.ico 1KB
back-end.iml 759B
Yolov5-Flask-VUE-master.iml 560B
pythonProject.iml 353B
01_missing_hole_13.jpg 1.5MB
01_spurious_copper_03.jpg 1.49MB
01_missing_hole_07.jpg 1.49MB
01_short_03.jpg 1.49MB
01_open_circuit_08.jpg 1.49MB
01_missing_hole_08.jpg 1.48MB
01_mouse_bite_09.jpg 1.47MB
01_spurious_copper_03.jpg 1.36MB
01_spurious_copper_03.jpg 1.36MB
01_mouse_bite_09.jpg 1.36MB
01_mouse_bite_09.jpg 1.36MB
01_missing_hole_13.jpg 1.36MB
01_missing_hole_13.jpg 1.36MB
01_missing_hole_08.jpg 1.36MB
01_missing_hole_08.jpg 1.36MB
01_missing_hole_07.jpg 1.36MB
01_missing_hole_07.jpg 1.36MB
01_short_03.jpg 1.36MB
01_short_03.jpg 1.36MB
01_open_circuit_08.jpg 1.36MB
01_open_circuit_08.jpg 1.36MB
01_missing_hole_01.jpg 1.36MB
01_missing_hole_01.jpg 1.36MB
mmexport1609145048008.jpg 757KB
微信图片_20240302220443.jpg 471KB
main.js 873B
vue.config.js 214B
babel.config.js 53B
package-lock.json 600KB
package.json 1KB
package.json 222B
package-lock.json 203B
README.md 11KB
Flask系统部署文档.md 3KB
README.md 2KB
README.md 331B
1663065798008456.png 941KB
d1c13f643007f09b137f55bfeda69d287d6f3af3.png 556KB
sun.png 471KB
8705af604df2bb6e861d9272ae1b55996e2d3714.png 147KB
00ab-iytwsca6008447.png 118KB
53f7eb38d6278632dda2f77a8cd43ef4.png 63KB
5623c6f96cdf08c512c2edd125486834.png 59KB
N0039.png 40KB
123803a5aa5d62c289c23dac911c986f.png 0B
final.pt 14.41MB
yolov5s.pt 14.12MB
datasets.py 44KB
general.py 35KB
common.py 32KB
wandb_utils.py 26KB
plots.py 20KB
yolo.py 15KB
metrics.py 14KB
torch_utils.py 13KB
augmentations.py 12KB
loss.py 9KB
__init__.py 8KB
autoanchor.py 7KB
downloads.py 6KB
experimental.py 5KB
activations.py 4KB
AIDetector_pytorch.py 3KB
app.py 3KB
callbacks.py 2KB
autobatch.py 2KB
resume.py 1KB
sweep.py 1KB
__init__.py 1KB
restapi.py 1KB
log_dataset.py 1KB
predict.py 311B
example_request.py 299B
main.py 254B
process.py 130B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
datasets.cpython-310.pyc 35KB
general.cpython-310.pyc 30KB
common.cpython-310.pyc 28KB
plots.cpython-310.pyc 18KB
general.cpython-38.pyc 14KB
general.cpython-37.pyc 14KB
yolo.cpython-310.pyc 12KB
torch_utils.cpython-310.pyc 12KB
metrics.cpython-310.pyc 11KB
共 164 条
- 1
- 2
资源评论
不走小道
- 粉丝: 3365
- 资源: 5055
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 最新版新UI包天付费视频打赏程序 带包天+可扣量+代理+多模板非云赏V系列
- YOLO算法-检测驾驶员侧车窗是否关闭数据集-564张图像带标签-车窗关闭-汽车-车窗打开.zip
- YOLO算法-下水管道缺陷检测数据集-980张图像带标签-关节偏移-障碍物-裂纹-带扣-洞-公用设施入侵-碎片.zip
- YOLO算法-刀器数据集-610张图像带标签-刀.zip
- YOLO算法-办公室椅子数据集-876张图像带标签.zip
- YOLO算法-绵羊检测数据集-574张图像带标签-羊.zip
- YOLO算法-包装好的服装数据集-654张图像带标签-.zip
- YOLO算法-警车检测数据集-676张图像带标签-.zip
- YOLO算法-垃圾箱检测数据集-1228张图像带标签-垃圾桶.zip
- YOLO算法-刀具检测数据集-300张图像带标签-.zip
- G120 EPOS基本定位功能关键点系列-堆垛机报F7452追踪原因.mp4
- YOLO算法-罐头和瓶子数据集-595张图像带标签.zip
- YOLO算法-回收站数据集-501张图像带标签-黑色垃圾箱-绿色垃圾桶-箱子-杯子-老鼠-蓝色垃圾桶.zip
- 2015年10月及2016年4月全国高等教育自学考试试题及答案02325
- YOLO算法-刀数据集-830张图像带标签-刀.zip
- YOLO算法-雨水排放涵洞模型数据集-1000张图像带标签-.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功