resentations are assigned an integer key called the object shape.
Thus, the guard is a simple equality check on the object shape.
Representation specialization: numbers. JavaScript has no
integer type, only a Number type that is the set of 64-bit IEEE-
754 floating-pointer numbers (“doubles”). But many JavaScript
operators, in particular array accesses and bitwise operators, really
operate on integers, so they first convert the number to an integer,
and then convert any integer result back to a double.
1
Clearly, a
JavaScript VM that wants to be fast must find a way to operate on
integers directly and avoid these conversions.
In TraceMonkey, we support two representations for numbers:
integers and doubles. The interpreter uses integer representations
as much as it can, switching for results that can only be represented
as doubles. When a trace is started, some values may be imported
and represented as integers. Some operations on integers require
guards. For example, adding two integers can produce a value too
large for the integer representation.
Function inlining. LIR traces can cross function boundaries
in either direction, achieving function inlining. Move instructions
need to be recorded for function entry and exit to copy arguments
in and return values out. These move statements are then optimized
away by the compiler using copy propagation. In order to be able
to return to the interpreter, the trace must also generate LIR to
record that a call frame has been entered and exited. The frame
entry and exit LIR saves just enough information to allow the
intepreter call stack to be restored later and is much simpler than
the interpreter’s standard call code. If the function being entered
is not constant (which in JavaScript includes any call by function
name), the recorder must also emit LIR to guard that the function
is the same.
Guards and side exits. Each optimization described above
requires one or more guards to verify the assumptions made in
doing the optimization. A guard is just a group of LIR instructions
that performs a test and conditional exit. The exit branches to a
side exit, a small off-trace piece of LIR that returns a pointer to
a structure that describes the reason for the exit along with the
interpreter PC at the exit point and any other data needed to restore
the interpreter’s state structures.
Aborts. Some constructs are difficult to record in LIR traces.
For example, eval or calls to external functions can change the
program state in unpredictable ways, making it difficult for the
tracer to know the current type map in order to continue tracing.
A tracing implementation can also have any number of other limi-
tations, e.g.,a small-memory device may limit the length of traces.
When any situation occurs that prevents the implementation from
continuing trace recording, the implementation aborts trace record-
ing and returns to the trace monitor.
3.2 Trace Trees
Especially simple loops, namely those where control flow, value
types, value representations, and inlined functions are all invariant,
can be represented by a single trace. But most loops have at least
some variation, and so the program will take side exits from the
main trace. When a side exit becomes hot, TraceMonkey starts a
new branch trace from that point and patches the side exit to jump
directly to that trace. In this way, a single trace expands on demand
to a single-entry, multiple-exit trace tree.
This section explains how trace trees are formed during execu-
tion. The goal is to form trace trees during execution that cover all
the hot paths of the program.
1
Arrays are actually worse than this: if the index value is a number, it must
be converted from a double to a string for the property access operator, and
then to an integer internally to the array implementation.
Starting a tree. Tree trees always start at loop headers, because
they are a natural place to look for hot paths. In TraceMonkey, loop
headers are easy to detect–the bytecode compiler ensures that a
bytecode is a loop header iff it is the target of a backward branch.
TraceMonkey starts a tree when a given loop header has been exe-
cuted a certain number of times (2 in the current implementation).
Starting a tree just means starting recording a trace for the current
point and type map and marking the trace as the root of a tree. Each
tree is associated with a loop header and type map, so there may be
several trees for a given loop header.
Closing the loop. Trace recording can end in several ways.
Ideally, the trace reaches the loop header where it started with
the same type map as on entry. This is called a type-stable loop
iteration. In this case, the end of the trace can jump right to the
beginning, as all the value representations are exactly as needed to
enter the trace. The jump can even skip the usual code that would
copy out the state at the end of the trace and copy it back in to the
trace activation record to enter a trace.
In certain cases the trace might reach the loop header with a
different type map. This scenario is sometime observed for the first
iteration of a loop. Some variables inside the loop might initially be
undefined, before they are set to a concrete type during the first loop
iteration. When recording such an iteration, the recorder cannot
link the trace back to its own loop header since it is type-unstable.
Instead, the iteration is terminated with a side exit that will always
fail and return to the interpreter. At the same time a new trace is
recorded with the new type map. Every time an additional type-
unstable trace is added to a region, its exit type map is compared to
the entry map of all existing traces in case they complement each
other. With this approach we are able to cover type-unstable loop
iterations as long they eventually form a stable equilibrium.
Finally, the trace might exit the loop before reaching the loop
header, for example because execution reaches a break or return
statement. In this case, the VM simply ends the trace with an exit
to the trace monitor.
As mentioned previously, we may speculatively chose to rep-
resent certain Number-typed values as integers on trace. We do so
when we observe that Number-typed variables contain an integer
value at trace entry. If during trace recording the variable is unex-
pectedly assigned a non-integer value, we have to widen the type
of the variable to a double. As a result, the recorded trace becomes
inherently type-unstable since it starts with an integer value but
ends with a double value. This represents a mis-speculation, since
at trace entry we specialized the Number-typed value to an integer,
assuming that at the loop edge we would again find an integer value
in the variable, allowing us to close the loop. To avoid future spec-
ulative failures involving this variable, and to obtain a type-stable
trace we note the fact that the variable in question as been observed
to sometimes hold non-integer values in an advisory data structure
which we call the “oracle”.
When compiling loops, we consult the oracle before specializ-
ing values to integers. Speculation towards integers is performed
only if no adverse information is known to the oracle about that
particular variable. Whenever we accidentally compile a loop that
is type-unstable due to mis-speculation of a Number-typed vari-
able, we immediately trigger the recording of a new trace, which
based on the now updated oracle information will start with a dou-
ble value and thus become type stable.
Extending a tree. Side exits lead to different paths through
the loop, or paths with different types or representations. Thus, to
completely cover the loop, the VM must record traces starting at all
side exits. These traces are recorded much like root traces: there is
a counter for each side exit, and when the counter reaches a hotness
threshold, recording starts. Recording stops exactly as for the root
trace, using the loop header of the root trace as the target to reach.
评论2