# ZeroMQ on z/OS UNIX System Services
ZeroMQ has been successfully built on z/OS, using [z/OS UNIX System
Services](http://www-03.ibm.com/systems/z/os/zos/features/unix/),
a certified UNIX environment for the [IBM
z-series](http://www-03.ibm.com/systems/z/). The build is possible
with the shell scripts in this directory, as described below.
Tested build combinations:
* ZeroMQ 4.0.4, using IBM XL C/C++ compiler, as XPLINK in ILP32 mode
* ZeroMQ 4.0.4, using IBM XL C/C++ compiler, as XPLINK in LP64 mode
* ZeroMQ 4.1-git, using IBM XL C/C++ compiler, as XPLINK in ILP32 mode
Other combinations are likely to work, possibly with minor changes,
but have not been tested. Both static library and DLL modes have been
tested.
There are some minor limitations (detailed below), but all core
functionality tests run successfully.
## Quickstart: building ZeroMQ on z/OS UNIX System Services
Assuming [z/OS UNIX System
Services](http://www-03.ibm.com/systems/z/os/zos/features/unix/) is
installed, and the [z/OS XL C/C++
compiler suite](http://www-03.ibm.com/software/products/en/czos) is
installed, ZeroMQ can be built as follows:
* Download and extract ZeroMQ tar file
* Ensure contents of this directory are present at `builds/zos`
within that extracted diretory (eg, `zeromq-VERSION/builds/zos/`;
copy these files in, if not already present, and make sure the
shell scripts are executable)
* (Optional) set ZCXXFLAGS for additional compile flags (see below)
* Build `libzmq.a` static library and `libzmq.so` dynamic
library, with:
cd zeromq-VERSION
builds/zos/makelibzmq
or to skip the `libzmq.so` dynamic library (only building `libzmq.a`):
cd zeromq-VERSION
BUILD_DLL=false
export BUILD_DLL
builds/zos/makelibzmq
* (Optional, but recommended) build and run the core tests with:
cd zeromq-VERSION
builds/zos/maketests
builds/zos/runtests
* To remove built files, to start again (eg, rebuild with different
compile/link flags):
cd zeromq-VERSION
builds/zos/makeclean
There are details on specifying alternative compilation flags below.
## Quickstart: using ZeroMQ on z/OS UNIX System Services
### Static linking
Install `include/*.h` somewhere on your compiler include path.
Install `src/libzmq.a` somewhere on your library search path.
Compile and link application with:
c++ -Wc,xplink -Wl,xplink ... -+ -o myprog myprog.cpp -lzmq
Run with:
./myprog
### Dynamic linking
Install `include/*.h` somewhere on your compiler include path.
Install `src/libzmq.so` somewhere on your LIBPATH.
Install `src/libzmq.x` somewhere you can reference for import linking.
Compile and link application:
c++ -Wc,xplink -Wc,dll ... -+ -c -o myprog.o myprog.cpp
c++ -Wl,xplink -o myprog myprog.o /PATH/TO/libzmq.x
Run with:
LIBPATH=/DIR/OF/LIBZMQ.SO:/lib:/usr/lib:... # if not in default path
export LIBPATH
./myprog
## ZeroMQ on z/OS UNIX System Services: Application considerations
z/0S UNIX System Services does not provide a way to block the
[`SIGPIPE` signal being generated when a thread writes to a closed socket](http://pic.dhe.ibm.com/infocenter/zvm/v6r2/index.jsp?topic=%2Fcom.ibm.zos.r12.cbcpx01%2Fcbcpg1b0287.htm)
(compare with other platforms that support the `SO_NOSIGPIPE` socket
option, and/or the `MSG_NOSIGNAL` flag on `send()`; z/OS UNIX System
Services supports neither).
As a result, applications using ZeroMQ on z/OS UNIX System Services
have to expect to encounter `SIGPIPE` at various times during the use
of the library, if sockets are unexpectedly disconnected. Normally
`SIGPIPE` will terminate the application.
A simple solution, if `SIGPIPE` is not required for normal operation
of the application (eg, it is not part of a unix pipeline, the
traditional use of `SIGPIPE`), is to set `SIGPIPE` to be ignored
with code like:
#include <signal.h>
...
signal(SIGPIPE, SIG_IGN);
near the start of the application (eg, before initialising the ZeroMQ
library).
If `SIGPIPE` is required for normal operation it is recommended that
the application install a signal handler that flags the signal was
received, and allows the application main loop to determine if it
was received for one of its own file descriptors -- and ignores it if it
none of the applications own file descriptors seems to have changed.
Linking to the `libzmq.a` static library will pull in substantially
all of the library code, which will add about 4MB to the application
size (per executable statically linked with ZeroMQ). If this is a
significant consideration, use of the DLL version is recommended.
See also ZeroMQ test status on z/OS UNIX System Services below
for other caveats.
## Setting other compilation flags
### Optimisation
To build with optimisation:
* set `ZCXXFLAGS` to "`-O2`" before starting build process above
### Full debugging symbols
To build with debugging symbols:
* set `ZCXXFLAGS` to "`-g`" before starting build process above
### 64-bit mode (LP64/amode=64)
To build in 64-bit mode:
The default build is
[ILP32](http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp?topic=/com.ibm.zos.r9.cbcux01/lp64cop.htm),
the default for the IBM XL C/C++ compiler. To build in LP64 mode
(64-bit):
* set `ZCXXFLAGS` to "`-Wc,lp64 -Wl,lp64`" before starting build
(64-bit mode can be combined with optimisation or debug symbols.)
### Combining compilation flags
Other build flags can be used in `ZXCCFLAGS` if desired. Beware that
they are passed through (Bourne) shell expansion, and passed to both
the compile and link stages; some experimentation of argument quoting
may be required (and arguments requiring parenthesis are particularly
complicated).
## ZeroMQ test status on z/OS UNIX System Services
As of 2014-07-22, 41 of the 43 tests in the core ZeroMQ test suite
pass. There are two tests that are expected to fail:
0. `test_abstract_ipc`: tests Linux-specific IPC functions, and is
expected to fail on non-Linux platforms.
0. `test_fork`: tests ability to use ZeroMQ both before *and* after
fork (and before exec()); this relies on the ability to use
pthreads both before *and* after fork. On z/OS (and some other
UNIX compliant platforms) functions like `pthreads_create` (used
by ZeroMQ) cannot be used after fork and before exec; on z/OS the
call after fork fails with `ELEMULTITHREADFORK` (errno=257) if
ZeroMQ was also used before fork. (On z/OS it appears possible
to use z/OS *after* fork, *providing* it has not been used before
fork -- the problem is the two separate initialisations of the
threading library, before and after fork, attempting to mix
together.) In practice this is unlikely to affect many real-world
programs -- most programs use threads or fork without exec, but
not both.
0. `test_diffserv`: tests ability to set IP_TOS ([IP Type of
Service](http://en.wikipedia.org/wiki/Type_of_service), or
[DiffServ](http://en.wikipedia.org/wiki/Differentiated_Services_Code_Point))
values on sockets. While z/OS UNIX System Services has the
preprocessor defines required, it appears not to support the
required functionality (call fails with "EDC8109I Protocol not
available.")
These three "expected to fail" tests are listed as XFAIL_TESTS, and
`runtests` will still consider the test run successful when they fail
as expected. (`builds/zos/runtests` will automatically skip these
"expected to fail" tests if running "all" tests.)
In addition `test_security_curve` does not do any meaningful testing,
as a result of the CURVE support not being compiled in; it requires
[`libsodium`](http://doc.libsodium.org/), which has not been
ported to z/OS UNIX System Services yet.
Multicast (via `libpgm`) is also not ported or compiled in.
[TIPC](http://hintjens.com/blog:70), a cluster IPC protocol,
is only supported on Linux, so it is not compiled