IEC 61508-6
Edition 2.0 2010-04
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Functional safety of electrical/electronic/programmable electronic safety-related
systems –
Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3
Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques
programmables relatifs à la sécurité –
Partie 6: Lignes directrices pour l'application de la CEI 61508-2 et de la
CEI 61508-3
IEC 61508-6:2010
®
THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2010 IEC, Geneva, Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or
IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.
IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email:
inmail@iec.ch
We
b: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email:
csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d’effectuer des recherches en utilisant différents critères (numéro de référence,
texte, comité d’études,…). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.
Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles
publications parues. Disponible en-ligne et aussi par email.
Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et
définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé
Vocabulaire Electrotechnique International en ligne.
Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du
Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 61508-6
Edition 2.0 2010-04
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Functional safety of electrical/electronic/programmable electronic safety-related
systems –
Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3
Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques
programmables relatifs à la sécurité –
Partie 6: Lignes directrices pour l'application de la CEI 61508-2 et de la
CEI 61508-3
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
XE
ICS 25.040.40
PRICE CODE
CODE PRIX
ISBN 978-2-88910-529-8
® Registered trademark of the International Electrotechnical Commission
Marque déposée de la Commission Electrotechnique Internationale
®
– 2 – 61508-6 © IEC:2010
CONTENTS
FOREWORD...........................................................................................................................6
INTRODUCTION.....................................................................................................................8
1 Scope.............................................................................................................................10
2 Normative references .....................................................................................................12
3 Definitions and abbreviations..........................................................................................12
Annex A (informative) Application of IEC 61508-2 and of IEC 61508-3.................................13
Annex B (informative) Example of technique for evaluating probabilities of hardware
failure ...................................................................................................................................
21
Annex C (informative) Calculation of diagnostic coverage and safe failure fraction –
worked example....................................................................................................................
76
Annex D (informative) A methodology for quantifying the effect of hardware-related
common cause failures in E/E/PE systems............................................................................
80
Annex E (informative) Example applications of software safety integrity tables of
IEC 61508-3 .........................................................................................................................
95
Bibliography........................................................................................................................110
Figure 1 – Overall framework of the IEC 61508 series ..........................................................
11
Figure A.1 – Application of IEC 61508-2 ...............................................................................17
Figure A.2 – Application of IEC 61508-2 (Figure A.1 continued)............................................18
Figure A.3 – Application of IEC 61508-3 ...............................................................................20
Figure B.1 – Reliability Block Diagram of a whole safety loop ...............................................22
Figure B.2 – Example configuration for two sensor channels.................................................26
Figure B.3 – Subsystem structure .........................................................................................29
Figure B.4 – 1oo1 physical block diagram .............................................................................30
Figure B.5 – 1oo1 reliability block diagram............................................................................31
Figure B.6 – 1oo2 physical block diagram .............................................................................32
Figure B.7 – 1oo2 reliability block diagram............................................................................32
Figure B.8 – 2oo2 physical block diagram .............................................................................33
Figure B.9 – 2oo2 reliability block diagram............................................................................33
Figure B.10 – 1oo2D physical block diagram.........................................................................33
Figure B.11 – 1oo2D reliability block diagram .......................................................................34
Figure B.12 – 2oo3 physical block diagram ...........................................................................34
Figure B.13 – 2oo3 reliability block diagram..........................................................................35
Figure B.14 – Architecture of an example for low demand mode of operation........................40
Figure B.15 – Architecture of an example for high demand or continuous mode of
operation ..............................................................................................................................
49
Figure B.16 – Reliability block diagram of a simple whole loop with sensors organised
into 2oo3 logic ......................................................................................................................
51
Figure B.17 – Simple fault tree equivalent to the reliability block diagram presented on
Figure B.1.............................................................................................................................
52
Figure B.18 – Equivalence fault tree / reliability block diagram..............................................52
Figure B.19 – Instantaneous unavailability U(t) of single periodically tested
components ..........................................................................................................................
54
Figure B.20 – Principle of PFD
avg
calculations when using fault trees...................................55
61508-6 © IEC:2010 – 3 –
Figure B.21 – Effect of staggering the tests ..........................................................................56
Figure B.22 – Example of complex testing pattern ................................................................56
Figure B.23 – Markov graph modelling the behaviour of a two component system ................58
Figure B.24 – Principle of the multiphase Markovian modelling .............................................59
Figure B.25 – Saw-tooth curve obtained by multiphase Markovian approach.........................60
Figure B.26 – Approximated Markovian model ......................................................................60
Figure B.27 – Impact of failures due to the demand itself......................................................61
Figure B.28 – Modelling of the impact of test duration...........................................................61
Figure B.29 – Multiphase Markovian model with both DD and DU failures .............................62
Figure B.30 – Changing logic (2oo3 to 1oo2) instead of repairing first failure........................63
Figure B.31 – "Reliability" Markov graphs with an absorbing state ........................................63
Figure B.32 – "Availability" Markov graphs without absorbing states .....................................65
Figure B.33 – Petri net for modelling a single periodically tested component.........................66
Figure B.34 – Petri net to model common cause failure and repair resources........................69
Figure B.35 – Using reliability block diagrams to build Petri net and auxiliary Petri net
for PFD and PFH calculations ...............................................................................................70
Figure B.36 – Simple Petri net for a single component with revealed failures and
repairs ..................................................................................................................................71
Figure B.37 – Example of functional and dysfunctional modelling with a formal
language...............................................................................................................................72
Figure B.38 – Uncertainty propagation principle....................................................................73
Figure D.1 – Relationship of common cause failures to the failures of individual
channels ...............................................................................................................................82
Figure D.2 – Implementing shock model with fault trees........................................................93
Table B.1 – Terms and their ranges used in this annex (applies to 1oo1, 1oo2, 2oo2,
1oo2D, 1oo3 and 2oo3) ........................................................................................................
27
Table B.2 – Average probability of failure on demand for a proof test interval of six
months and a mean time to restoration of 8 h .......................................................................36
Table B.3 – Average probability of failure on demand for a proof test interval of one
year and mean time to restoration of 8 h...............................................................................37
Table B.4 – Average probability of failure on demand for a proof test interval of two
years and a mean time to restoration of 8 h ..........................................................................38
Table B.5 – Average probability of failure on demand for a proof test interval of
ten years and a mean time to restoration of 8 h ....................................................................39
Table B.6 – Average probability of failure on demand for the sensor subsystem in the
example for low demand mode of operation (one year proof test interval and
8 h MTTR) ............................................................................................................................
40
Table B.7 – Average probability of failure on demand for the logic subsystem in the
example for low demand mode of operation (one year proof test interval and
8 h MTTR) ............................................................................................................................
41
Table B.8 – Average probability of failure on demand for the final element subsystem
in the example for low demand mode of operation (one year proof test interval and
8 h MTTR) ............................................................................................................................
41
Table B.9 – Example for a non-perfect proof test ..................................................................42
Table B.10 – Average frequency of a dangerous failure (in high demand or continuous
mode of operation) for a proof test interval of one month and a mean time to
restoration of 8 h ..................................................................................................................
45