<div align="center">
<p>
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png" alt="YOLOv8 performance plots"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco8.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv8(官网停更前最后一版)
共633个文件
md:332个
py:159个
yaml:75个
需积分: 5 0 下载量 99 浏览量
2024-11-17
15:29:26
上传
评论
收藏 1.87MB ZIP 举报
温馨提示
不知道为什么官网YOLOv8源代码下架了,为了方便各位小伙伴们对YOLOv8进行研究,本人在此分享出来,希望大家多多支持!
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv8(官网停更前最后一版) (633个子文件)
main.cc 10KB
inference.cc 7KB
main.cc 1KB
CITATION.cff 764B
CNAME 21B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 2KB
Dockerfile 4KB
Dockerfile-arm64 3KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson-jetpack4 3KB
Dockerfile-jetson-jetpack5 3KB
Dockerfile-python 3KB
Dockerfile-runner 2KB
.gitignore 2KB
inference.h 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
main.html 904B
source-file.html 858B
favicon.ico 9KB
tutorial.ipynb 36KB
explorer.ipynb 22KB
object_tracking.ipynb 13KB
object_counting.ipynb 13KB
heatmaps.ipynb 11KB
hub.ipynb 5KB
bus.jpg 134KB
zidane.jpg 49KB
extra.js 3KB
LICENSE 34KB
predict.md 49KB
cfg.md 45KB
tensorrt.md 37KB
README.md 36KB
README.zh-CN.md 36KB
train.md 33KB
ros-quickstart.md 33KB
model-deployment-options.md 26KB
nvidia-jetson.md 26KB
yolo-world.md 24KB
openvino.md 23KB
raspberry-pi.md 23KB
yolov8.md 23KB
quickstart.md 22KB
track.md 22KB
steps-of-a-cv-project.md 21KB
analytics.md 20KB
simple-utilities.md 20KB
yolo-common-issues.md 20KB
heatmaps.md 20KB
train_custom_data.md 19KB
roboflow.md 19KB
yolov10.md 19KB
model-training-tips.md 19KB
models.md 18KB
object-counting.md 18KB
model-deployment-practices.md 18KB
yolov7.md 18KB
isolating-segmentation-objects.md 17KB
data-collection-and-annotation.md 17KB
yolov9.md 17KB
sam.md 16KB
CI.md 16KB
pose.md 16KB
segment.md 15KB
kfold-cross-validation.md 15KB
detect.md 15KB
amazon-sagemaker.md 15KB
obb.md 15KB
ray-tune.md 15KB
model-testing.md 15KB
model_export.md 15KB
python.md 15KB
yolo-performance-metrics.md 15KB
defining-project-goals.md 15KB
pytorch_hub_model_loading.md 15KB
tensorboard.md 14KB
classify.md 14KB
preprocessing_annotated_data.md 14KB
index.md 14KB
workouts-monitoring.md 14KB
fast-sam.md 14KB
api.md 14KB
model-evaluation-insights.md 14KB
yolov5.md 14KB
export.md 13KB
README.md 13KB
clearml.md 13KB
hyperparameter-tuning.md 13KB
torchscript.md 13KB
index.md 13KB
vision-eye.md 13KB
index.md 13KB
paddlepaddle.md 13KB
共 633 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论
逐梦藏蓝-Kaven
- 粉丝: 128
- 资源: 6
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- tmp_c0c9416e19bc5c2880fdfd47eafe4dda80062b4cf4973274
- 通过javascript实现数据排序功能.rar
- 温湿度监测系统.zip
- JAVASpring MVC进销存管理系统源码数据库 MySQL源码类型 WebForm
- 基于AEDA的数据增强技术的中文文本分类+python项目源码+文档说明
- 源支付5.1.7前端+后台+云端协议2.0
- 镜像资源centos7
- python《基于Multi-Sample Dropout的文本分类》+项目源码+文档说明
- C#MVC4通用企业门户网站源码数据库 SQL2008源码类型 WebForm
- python《基于ChineseBERT的中文文本纠错(监督学习模型)》+项目源码+文档说明
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功