# -*- coding: utf-8 -*-
# module pyparsing.py
#
# Copyright (c) 2003-2019 Paul T. McGuire
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
__doc__ = \
"""
pyparsing module - Classes and methods to define and execute parsing grammars
=============================================================================
The pyparsing module is an alternative approach to creating and
executing simple grammars, vs. the traditional lex/yacc approach, or the
use of regular expressions. With pyparsing, you don't need to learn
a new syntax for defining grammars or matching expressions - the parsing
module provides a library of classes that you use to construct the
grammar directly in Python.
Here is a program to parse "Hello, World!" (or any greeting of the form
``"<salutation>, <addressee>!"``), built up using :class:`Word`,
:class:`Literal`, and :class:`And` elements
(the :class:`'+'<ParserElement.__add__>` operators create :class:`And` expressions,
and the strings are auto-converted to :class:`Literal` expressions)::
from pip._vendor.pyparsing import Word, alphas
# define grammar of a greeting
greet = Word(alphas) + "," + Word(alphas) + "!"
hello = "Hello, World!"
print (hello, "->", greet.parseString(hello))
The program outputs the following::
Hello, World! -> ['Hello', ',', 'World', '!']
The Python representation of the grammar is quite readable, owing to the
self-explanatory class names, and the use of '+', '|' and '^' operators.
The :class:`ParseResults` object returned from
:class:`ParserElement.parseString` can be
accessed as a nested list, a dictionary, or an object with named
attributes.
The pyparsing module handles some of the problems that are typically
vexing when writing text parsers:
- extra or missing whitespace (the above program will also handle
"Hello,World!", "Hello , World !", etc.)
- quoted strings
- embedded comments
Getting Started -
-----------------
Visit the classes :class:`ParserElement` and :class:`ParseResults` to
see the base classes that most other pyparsing
classes inherit from. Use the docstrings for examples of how to:
- construct literal match expressions from :class:`Literal` and
:class:`CaselessLiteral` classes
- construct character word-group expressions using the :class:`Word`
class
- see how to create repetitive expressions using :class:`ZeroOrMore`
and :class:`OneOrMore` classes
- use :class:`'+'<And>`, :class:`'|'<MatchFirst>`, :class:`'^'<Or>`,
and :class:`'&'<Each>` operators to combine simple expressions into
more complex ones
- associate names with your parsed results using
:class:`ParserElement.setResultsName`
- access the parsed data, which is returned as a :class:`ParseResults`
object
- find some helpful expression short-cuts like :class:`delimitedList`
and :class:`oneOf`
- find more useful common expressions in the :class:`pyparsing_common`
namespace class
"""
__version__ = "2.4.7"
__versionTime__ = "30 Mar 2020 00:43 UTC"
__author__ = "Paul McGuire <ptmcg@users.sourceforge.net>"
import string
from weakref import ref as wkref
import copy
import sys
import warnings
import re
import sre_constants
import collections
import pprint
import traceback
import types
from datetime import datetime
from operator import itemgetter
import itertools
from functools import wraps
from contextlib import contextmanager
try:
# Python 3
from itertools import filterfalse
except ImportError:
from itertools import ifilterfalse as filterfalse
try:
from _thread import RLock
except ImportError:
from threading import RLock
try:
# Python 3
from collections.abc import Iterable
from collections.abc import MutableMapping, Mapping
except ImportError:
# Python 2.7
from collections import Iterable
from collections import MutableMapping, Mapping
try:
from collections import OrderedDict as _OrderedDict
except ImportError:
try:
from ordereddict import OrderedDict as _OrderedDict
except ImportError:
_OrderedDict = None
try:
from types import SimpleNamespace
except ImportError:
class SimpleNamespace: pass
# version compatibility configuration
__compat__ = SimpleNamespace()
__compat__.__doc__ = """
A cross-version compatibility configuration for pyparsing features that will be
released in a future version. By setting values in this configuration to True,
those features can be enabled in prior versions for compatibility development
and testing.
- collect_all_And_tokens - flag to enable fix for Issue #63 that fixes erroneous grouping
of results names when an And expression is nested within an Or or MatchFirst; set to
True to enable bugfix released in pyparsing 2.3.0, or False to preserve
pre-2.3.0 handling of named results
"""
__compat__.collect_all_And_tokens = True
__diag__ = SimpleNamespace()
__diag__.__doc__ = """
Diagnostic configuration (all default to False)
- warn_multiple_tokens_in_named_alternation - flag to enable warnings when a results
name is defined on a MatchFirst or Or expression with one or more And subexpressions
(only warns if __compat__.collect_all_And_tokens is False)
- warn_ungrouped_named_tokens_in_collection - flag to enable warnings when a results
name is defined on a containing expression with ungrouped subexpressions that also
have results names
- warn_name_set_on_empty_Forward - flag to enable warnings whan a Forward is defined
with a results name, but has no contents defined
- warn_on_multiple_string_args_to_oneof - flag to enable warnings whan oneOf is
incorrectly called with multiple str arguments
- enable_debug_on_named_expressions - flag to auto-enable debug on all subsequent
calls to ParserElement.setName()
"""
__diag__.warn_multiple_tokens_in_named_alternation = False
__diag__.warn_ungrouped_named_tokens_in_collection = False
__diag__.warn_name_set_on_empty_Forward = False
__diag__.warn_on_multiple_string_args_to_oneof = False
__diag__.enable_debug_on_named_expressions = False
__diag__._all_names = [nm for nm in vars(__diag__) if nm.startswith("enable_") or nm.startswith("warn_")]
def _enable_all_warnings():
__diag__.warn_multiple_tokens_in_named_alternation = True
__diag__.warn_ungrouped_named_tokens_in_collection = True
__diag__.warn_name_set_on_empty_Forward = True
__diag__.warn_on_multiple_string_args_to_oneof = True
__diag__.enable_all_warnings = _enable_all_warnings
__all__ = ['__version__', '__versionTime__', '__author__', '__compat__', '__diag__',
'And', 'CaselessKeyword', 'CaselessLiteral', 'CharsNotIn', 'Combine', 'Dict', 'Each', 'Empty',
'FollowedBy', 'Forward', 'GoToColumn', 'Group', 'Keyword', 'LineEnd', 'LineStart', 'Literal',
'PrecededBy', 'MatchFirst', 'NoMatch', 'NotAny', 'OneOrMore', 'OnlyOnce', 'Optional', 'Or',
'ParseBaseException', 'ParseElementEnhance', 'Pars
python数据分析-分支和循环.zip
需积分: 0 4 浏览量
更新于2023-02-16
收藏 2.75MB ZIP 举报
在Python编程语言中,数据分析是一项核心技能,广泛应用于科学计算、商业智能以及机器学习等领域。本压缩包"python数据分析-分支和循环.zip"显然聚焦于Python中的基础控制流结构——分支和循环,这是任何编程语言中都至关重要的部分。下面我们将深入探讨这两个主题。
分支结构是程序中用于实现条件判断的工具,它允许代码根据特定条件执行不同的路径。在Python中,最常用的分支结构是`if`、`elif`和`else`语句。一个基本的`if`语句结构如下:
```python
if condition:
# 当条件为真时执行的代码块
else:
# 当条件为假时执行的代码块
```
`elif`(else if)用于添加额外的条件检查,这样可以处理多种可能的情况:
```python
if condition1:
# 当condition1为真时执行的代码块
elif condition2:
# 当condition1为假且condition2为真时执行的代码块
else:
# 所有条件都为假时执行的代码块
```
在数据分析中,分支结构常用于决定如何处理不同类型的变量或数据值,例如检查数据是否缺失、是否符合预期的数据类型,或者是否落在特定范围内。
接下来是循环结构,它允许代码重复执行一段或多段任务,直到满足某个条件为止。Python提供了两种主要的循环结构:`for`循环和`while`循环。
1. `for`循环通常用于遍历序列(如列表、元组或字符串)或其他可迭代对象:
```python
for item in sequence:
# 对每个item执行的操作
```
在数据分析中,`for`循环常用于遍历数据集的每一行或每一列,进行计算、过滤或转换等操作。
2. `while`循环则基于一个条件来决定是否继续执行循环:
```python
while condition:
# 当条件为真时执行的代码块
# 通常需要在循环体内部修改条件,以便在满足一定条件后退出循环
```
在数据分析中,`while`循环可能用于迭代直到达到某个特定条件,例如找到满足特定标准的数据点,或者当某种变化不再显著时停止迭代算法。
除了基础的循环结构,Python还提供了`break`和`continue`语句来控制循环行为。`break`用于立即退出当前循环,而`continue`则跳过当前迭代剩余的部分,直接进入下一次循环。
在实际的数据分析项目中,分支和循环往往结合使用,以实现复杂的数据处理逻辑。例如,我们可以使用`for`循环遍历数据,然后用`if`语句对每个数据点进行条件检查,根据检查结果决定是否进一步处理该数据点。
通过深入理解和熟练运用这些控制流结构,你可以编写出更高效、更灵活的数据分析代码,从而更好地挖掘和理解数据中的信息。这个压缩包"day3-分支和循环"很可能是教学资料,涵盖了这些基础知识的实践应用,对于提升Python数据分析技能将大有裨益。
mlrAle_T
- 粉丝: 1
- 资源: 10
最新资源
- 电子学习资料设计作品全资料交通控制器设计资料
- 基于python的高校社团学生会管理系统(django)源代码(python毕业设计完整源码+LW).zip
- 基于lsb算法与rsa算法的信息隐藏算法实现(django)源代码(python毕业设计完整源码+LW).zip
- 基于Vue和JavaScript的校园二手交易平台设计源码
- 电子学习资料设计作品全资料经典之经典单片机设计
- 基于ArkTS的鸿蒙系统拼图游戏设计源码
- 基于OpenCV全景图像拼接系统源代码(python毕业设计完整源码+LW).zip
- 基于C++和Qt技术的多功能智能家居系统设计源码
- 电子学习资料设计作品全资料具有定时功能的八路数显抢答器的设计
- 基于大数据的电影市场预测分析(django)源代码(python毕业设计完整源码+LW).zip
- 基于3D卷积神经网络的阿尔兹海默智能诊断Web应用设计源码
- 基于HTML的简洁单页个人简历模板设计源码
- 基于混沌系统敏感文本信息加密算法研究(django)源代码(python毕业设计完整源码+LW).zip
- 基于Vue的丰富组件库设计源码,有趣实用欢迎star和pr
- 电子学习资料设计作品全资料开关电源
- 塑料箱堆垛机(sw18可编辑+工程图+bom)全套技术资料100%好用.zip.zip