# Tridiagonal Matrix Algorithm [![View Tridiagonal Matrix Algorithm on File Exchange](https://www.mathworks.com/matlabcentral/images/matlab-file-exchange.svg)](https://www.mathworks.com/matlabcentral/fileexchange/85438-tridiagonal-matrix-algorithm)
<br/><br/>
# `tridiagonal_matrix`
Solves the tridiagonal linear system <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{A}\mathbf{x}=\mathbf{d}"/> for <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{x}\in\mathbb{R}^{n}" title="\mathbf{x}\in\mathbb{R}^{n}" /> using the matrix implementation of the tridiagonal matrix algorithm.
## Syntax
`x = tridiagonal_matrix(A,d)`
## Description
`x = tridiagonal_matrix(A,d)` solves the tridiagonal linear system <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{A}\mathbf{x}=\mathbf{d}"/> for <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{x}\in\mathbb{R}^{n}" title="\mathbf{x}\in\mathbb{R}^{n}" />, where <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{A}\in&space;{\mathbb{R}}^{n\times&space;n}"/> is a tridiagonal matrix and <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{d}\in&space;{\mathbb{R}}^n"/>.
<br/><br/>
# `tridiagonal_vector`
Solves the tridiagonal linear system <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{A}\mathbf{x}=\mathbf{d}"/> for <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{x}\in\mathbb{R}^{n}" title="\mathbf{x}\in\mathbb{R}^{n}" /> using the vector implementation of the tridiagonal matrix algorithm.
## Syntax
`x = tridiagonal_vector(a,b,c,d)`
## Description
`x = tridiagonal_vector(a,b,c,d)` solves the tridiagonal linear system <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{A}\mathbf{x}=\mathbf{d}"/> for <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{x}\in\mathbb{R}^{n}" title="\mathbf{x}\in\mathbb{R}^{n}" />, where <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{A}\in&space;{\mathbb{R}}^{n\times&space;n}"/> is a tridiagonal matrix defined using the tridiagonal vectors (<img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{a}\in\mathbb{R}^{n-1}"/>, <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{b}\in\mathbb{R}^{n}"/>, and <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{c}\in\mathbb{R}^{n-1}"/>) and where <img src="https://latex.codecogs.com/svg.image?\inline&space;\mathbf{d}\in&space;{\mathbb{R}}^n"/>.
<br/><br/>
# Tridiagonal Matrix Convention
For these implementations, I use the following convention for denoting the elements of the tridiagonal matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{A}"/>:
<img src="https://latex.codecogs.com/svg.latex?\mathbf{A}=\left\lbrack&space;\begin{array}{cccccc}&space;b_1&space;&space;&&space;c_1&space;&space;&&space;&space;&&space;&space;&&space;&space;&&space;\\&space;a_1&space;&space;&&space;b_2&space;&space;&&space;c_2&space;&space;&&space;&space;&&space;&space;&&space;\\&space;&space;&&space;a_2&space;&space;&&space;\ddots&space;&space;&&space;\ddots&space;&space;&&space;&space;&&space;\\&space;&space;&&space;&space;&&space;\ddots&space;&space;&&space;\ddots&space;&space;&&space;c_{n-2}&space;&space;&&space;\\&space;&space;&&space;&space;&&space;&space;&&space;a_{n-2}&space;&space;&&space;b_{n-1}&space;&space;&&space;c_{n-1}&space;\\&space;&space;&&space;&space;&&space;&space;&&space;&space;&&space;a_{n-1}&space;&space;&&space;b_n&space;&space;\end{array}\right\rbrack"/>
Most other references have <img src="https://latex.codecogs.com/svg.latex?\inline&space;a_i"/>'s ranging from <img src="https://latex.codecogs.com/svg.latex?\inline&space;a_2"/> to <img src="https://latex.codecogs.com/svg.latex?\inline&space;a_n"/> both in the definition of the tridiagonal matrix and in the algorithm used to solve the corresponding linear system. In this implementation, I have the <img src="https://latex.codecogs.com/svg.latex?\inline&space;a_i"/>'s ranging from <img src="https://latex.codecogs.com/svg.latex?\inline&space;a_1"/> to <img src="https://latex.codecogs.com/svg.latex?\inline&space;a_{n-1}"/>; this makes the algorithm slightly more straightforward to implement.
<br/><br/>
# Examples and Additional Documentation
- See "EXAMPLES.mlx" or the "Examples" tab on the File Exchange page for examples.
- See ["Tridiagonal_Matrix_Algorithm.pdf"](https://tamaskis.github.io/files/Tridiagonal_Matrix_Algorithm.pdf) (also included with download) for the technical documentation.
![avatar](https://profile-avatar.csdnimg.cn/864ffdc5a26342a6add0026479aef1e5_matlab_dingdang.jpg!1)
matlab科研助手
- 粉丝: 3w+
- 资源: 5994
最新资源
- GooglePinyin谷歌开发的 拼音输入法的一个安装包版本
- html静态网站基于新闻类网站网页设计与实现(高分期末大作业).zip
- 异步电机矢量控制详解:FOC与转子磁场定向控制技术及其实践指南(附Word文档),异步电机矢量控制与学习:聚焦FOC与转子磁场定向控制,高效控制效果及Word文档详解,异步电机矢量控制 foc 转
- MATLAB仿真实现:Chan法计算TDOA与GDOP值的方法研究,MATLAB仿真实现:基于Chan法计算TDOA与GDOP算法研究,M00398-使用 Chan 法计算 TDOA 和计算 GDOP
- 中国暴雨数据集2001-2019.zip
- 三菱Q系列QD173H与QD170运动控制器深度解析:从参数配置到功能应用全解析,三菱Q系列QD173H与QD170运动控制器全方位详解:高级功能涉及事频讲解、源程序与配置文件的完整指南,全方位讲解三
- 一个英文输入法,主要用于英文输入,便捷好用
- 深入解析三线仿真问题解决方案,三线仿真问题的全面解析与解决方案,三线仿真问题解决 ,三线仿真; 问题解决; 解决方案; 故障排除,三线仿真难题攻破方案
- 分享一款好用的串口调试工具~
- 混合动力汽车基于规则的能量管理策略及CRUISE整车模型控制策略结果解析,基于规则的混合动力汽车能量管理策略及CRUISE整车模型控制策略研究图结果展示,混合动力汽车基于规则的能量管理策略,结果如图
- DeepSeek使用教程
- 陨石着陆数据集.zip
- 基于COMSOL模拟的多孔介质与多相材料渗流分析:球体及过渡区边界处理与土体夹杂碎石渗流特性研究,COMSOL多孔介质与多相材料渗流模拟:从球体到土体夹杂碎石的孔隙流模拟研究与应用,comsol多孔介
- 地图瓦片xyz下载工具
- 清华大学104页《DeepSeek:从入门到精通》
- 基于光伏交直流混合微电网离网模式的双下垂控制Matlab Simulink仿真研究,基于光伏交直流混合微电网的离网模式与双下垂控制Matlab Simulink仿真模型研究,光伏交直流混合微电网离网(
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)